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We propose that the brain performs approximate probabilistic inference using nonlinear recurrent processing 
in redundant population codes. Different overlapping patterns of neural population activity encode the brain’s 
estimates and uncertainties about latent variables that could explain its sense data. Nonlinear processing 
implicitly passes messages about these variables along a graph that determines which latent variables 
interact according to an internal model of the world. Since there are many equivalent neural implementations 
of this computation, we describe a general approach to identify the essential features of the neural algorithm. 
This approach uses dimensionality reduction in redundant codes to extract from the fine-grained neural 
signals how task-relevant variables are represented and transformed. To reveal these fundamental 
computations, it is insufficient to record neural activity during simple tasks because such tasks do not probe 
the brain’s structured internal model. Instead, core inferential brain functions can only be revealed by 
studying large-scale activity patterns during moderately complex, naturalistic behaviors.

INTRODUCTION
Perception as inference

In its purest form, probabilistic inference is the ‘right’ way to 
solve problems (Laplace 1812). While animal brains face 
various constraints and cannot always solve problems in the 
smartest possible way, many human and animal behaviors do 
provide strong evidence of probabilistic computation (Heeger 
and Simoncelli 1993; Gallistel et al. 2001; Ernst and Banks 
2002; Körding and Wolpert 2004; Yang and Shadlen 2007; 
Cheng et al. 2007). The idea that the brain performs statistical 
inference harkens back at least to Helmholtz (1925). According 
to this hypothesis, the goal of sensory processing is to identify 
properties of the world based on ambiguous sensory evidence. 
Since the true properties cannot be determined with perfect 
confidence, there is a probability distribution associated with 
different interpretations, and animals weigh these probabilities 
when choosing actions.

This idea has an illustrious history, with too many 
contributors for a complete list: (Barlow 1969; Hinton and 
Sejnowski 1993; Knill and Richards 1996; Lee and Mumford 
2003; Friston 2010; Yuille and Kersten 2006; Stocker and 
Simoncelli 2009; Knill and Pouget 2004; Rao 2004; Doya et al. 
2007; Denève 2008; Hoyer and Hyvärinen 2003; Berkes et al. 
2011; Yu and Dayan 2005; Tenenbaum et al. 2011). But despite 
excellent work interpreting behavior as probabilistic inference, 
and many models and experiments relating neuronal activity to 
probabilities, there is yet no consensus about how the brain 
actually implements these models.

To understand the neural basis of the brain’s probabilistic 
computations, we need to understand the overlapping 
processes of encoding, recoding, and decoding. Encoding 

describes the relationship between sensory stimuli and neural 
act ivi ty patterns. Recoding describes the dynamic 
transformation of those patterns into other patterns. Decoding 
describes the use of neural activity to generate actions.

In this paper we speculate how these processes might 
work, and what can be done to test it. Our core hypothesis is 
that the brain uses nonlinear computation by redundant, 
recurrently-connected population codes to perform statistical 
inference. This hypothesis is deliberately general-purpose and 
abstract, but it should be tested in concrete cases. We posit 
that to reveal the structure of these computations, we must 
study large-scale activity patterns in the brains of animals 
performing naturalistic tasks of greater complexity than most 
current efforts. We also argue that since there are many 
equivalent ways for the brain to implement natural 
computations, one can understand them best at the 
representational level — characterizing how encoded task 
variables are affected by neural computations — rather than by 
fine details of how the large-scale neural activity patterns are 
transformed.

But before we address inference in complex tasks, we’ll 
discuss some things neuroscience has successfully learned 
from simple tasks, and where those tasks necessarily fail to 
reveal computational principles.

Insights from simple tasks, and remaining questions
Neuroscience has learned much in the past several 

decades using a simple kind of tasks in which subjects choose 
between two options — two-alternative forced-choice tasks 
(2AFC). Many scientific advances came from measuring how 
populations of neurons encode and decode information about 
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simple stimuli. Binary tasks made it easier to isolate specific 
features and to measure perceptual or behavioral differences 
definitively, with less data. Based on such measurements, 
computational studies began asking how much of the encoded 
information was successfully decoded.

Many experiments found individual neurons that were tuned 
to task stimuli with enough reliability that only a small handful 
could be averaged together to perform as well or better than 
the animal in a 2AFC task (Newsome et al. 1989; Cohen & 
Newsome 2009; Gu et al. 2008; Chen et al. 2013a). With a 
brain full of neurons, why isn’t behavior better? One possible 
answer is that responses to a fixed stimulus are correlated, and 
these covariations cannot be averaged away by pooling. They 
thus limit the information the animal has about the world, 
creating a redundant neural code (Zohary et al. 1994, Moreno-
Bote et al. 2014). After properly accounting for correlated noise, 
is neural processing “optimal”, reaching the intrinsic bounds on 
behavioral performance, or “suboptimal”, falling far short of this 
bound? The answer may depend on the task, but the question 
itself has spurred valuable discussion and controversy in the 
interpretation of experiments.

Amazingly, individual neural responses also covary with 
choices or reported percepts, even when the stimulus itself is 
perfectly ambiguous, with no task-relevant information and thus 
no correct answer. Correlations between neural responses and 
choices (‘choice correlations’) have been reported in multiple 
tasks and cortical areas (Britten et al. 1996; Uka & DeAngelis 
2004; Nienborg & Cumming 2007; Gu et al. 2008; Fetsch et al. 
2011; Chen et al. 2013a,b,c; Liu et al. 2013a,b). The origin of 
these choice correlations remains unresolved. Do they reflect 
inherited ‘bottom-up’ noise, whose accumulation forms the 
perceptual decision (Britten et al. 1996; Shadlen and Newsome 
2001; Gold and Shadlen 2003; Parker and Newsome 1998; 
Schall 2003; Yang and Shadlen 2007; Shadlen et al. 1996; 
Pitkow et al. 2015)? Or are these choice correlations caused by 
useful top-down signals related to feature attention, high-level 
prior, or some computationally useful internal state (Krug 2004; 
Nienborg & Cumming 2007, 2009, 2010; Nienborg et al. 2012; 
Berkes et al. 2011; Reimer et al. 2014; Orbán et al. 2016; 
Haefner et al. 2016)?

Causal manipulations seem more reliable than correlation 
for assessing the role of neural circuits, but interpreting such 
experiments is still complicated. Inactivation of areas with high 
choice correlations sometimes produce large behavioral deficits 
(Chowdhury and DeAngelis 2008) — but not always (Chen et 
al. 2016; Katz et al. 2016). Furthermore, it is commonly argued 
that if inactivating a brain area produces no behavioral deficit, 
then it does not contribute to the behavior. Yet that is only 
guaranteed to be true for optimal computation: one may 
observe no performance change if the natural circuitry 
overweights the area as much as it is underweighted after 
inactivation. Even when there is an effect, it may be hard to 
interpret because stimuli and behavior are often represented in 
multiple interconnected areas, and inactivating one may 
change the responses of others in complex ways. Since basic 
questions about distributed processing remains, it will be critical 
to record from multiple brain areas during simple tasks.

Overall, through studies of how a neuron’s activity 
correlates with simple stimuli, simple behaviors, and other 
neurons, these 2AFC tasks have enabled insights into how 
sensory evidence is represented and accumulated for 
perceptual decisions.

A critique of simple tasks
However, such simple tasks do create other problems. The 

most fundamental is that they limit the computations and neural 
activity to a domain where the true power and adaptability of 
the brain is hidden. When the tasks are low-dimensional, the 
mean neural population dynamics are bound to a low-
dimensional subspace, and measured neural activity seems to 
hit this bound (Gao and Ganguli 2015). This means that the 
low-dimensional responses observed in the brain may be an 
artifact of overly simple tasks. Even worse, many of our 
standard tasks are linearly solvable using trivial transformations 
of sense data. And if natural tasks could be solved with linear 
computation, then we wouldn’t need a brain! We could just wire 
our sensors to our muscles and accomplish the same goal, 
because multiple linear processing  steps  is equivalent to 
a  single linear processing step. Distinguishing these steps 
becomes extremely difficult at best, and uninterpretable at 
worst.

Finally, principles that govern neural computation in 
overtrained animals performing unnatural lab tasks may be not 
generalize. Are we learning about the real brain in action, or a 
laboratory artifact? Evolution did not optimize brains for 2AFC 
tasks, and the real benefit of complex inferences like weighing 
uncertainty may not be apparent unless the uncertainty has 
complex structure. How can we understand how the brain 
works without challenging it with the tasks for which it evolved?

ALGORITHM OF THE BRAIN
The challenge of perception

In perception, the quantities of interest — the things we can 
act upon — cannot be directly observed through our senses. 
These unobservable quantities are called latent or hidden 
variables. For example, when we reach for a mug, we never 
directly sense the object’s three-dimensional boundary — that 
is latent — but only receive stereo images of reflected light, and 
an increase in tactile pressure when our joint angles reach 
some value. Some latent quantities are relevant to behavioral 
goals, like the handle’s orientation, while other latent variables 
are a nuisance, like shadows of other objects. Perception is 
hard because both types of latent variables affect sensory 
observations, and we must disentangle nuisance variables from 
our sense data to isolate the task-relevant ones (DiCarlo and 
Cox 2007).

We must infer all of this based on uncertain sensory 
evidence. There are multiple sources of uncertainty. Some is 
intrinsic to physics: lossy observations due to occlusion or 
photon shot noise. Some is unresolvable variation, like the hum 
of a city street. Other uncertainty is due to biology, including 
neural noise and limited sampling by the sensors and 
subsequent computation. Uncertainty also arises from 
suboptimal processing (Beck et al. 2012): model mismatch 
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behaves much like structured noise. 
Regardless of its origin, since uncertainty is 
an inevitable property of perceptual systems, 
it is valuable to process signals in 
accordance with probabilistic reasoning.

Unfortunately, exact probabi l ist ic 
inference is intractable for models that are 
as complex as the ones our brains seem to 
make. First, merely representing arbitrary 
joint probabilities exactly requires enormous 
resources, exponential in the number of 
variables. Second, performing inference over 
these distributions requires an exponentially 
large number of operations. This means that 
exact inference in arbitrary models is out of 
the question, for the brain or any other type 
of computer. Finally, even exploiting the 
structure in the natural world, a lifetime of 
experience never really has enough data to 
constrain a complete statistical model, nor 
do we have enough computational power 
and time to perform statistical inference 
based on these ideal statistics. Our brain 
m u s t i n v o k e t h e ‘ b l e s s i n g o f 
abstraction’ (Goodman et al. 2009) to 
o v e r c o m e t h i s ‘ c u r s e o f 
dimensionality’ (Bellman 1957). The brain 
must make assumptions about the world that 
limit what it can usefully represent, manipulate and learn — this 
is the ‘no free lunch theorem’ (Wolpert 1996).

Encoding: Redundant distributed representations of 
probabilistic graphical models

Since the probability distribution over things in the world is 
hugely complex, we hypothesize that the brain simplifies the 
world by assuming that not every variable necessarily interacts 
with all other variables. Instead, there may be a small number 
of important interactions. Variables and their interactions can be 

elegantly visualized as a sparsely connected graph (Figure 1A), 
and described mathematically as a probabilistic graphical 
model (Koller and Friedman 2009). These are representations 
of complex probability distributions as products of lower-
dimensional functions (see Box). Such constraints on possible 
distributions are appropriate for the natural world, which has 
both hierarchical and local structures.

Knowledge about the world is embodied in these 
interactions between variables. Many of the most important 
ones express nonlinear relationships between variables. For 
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Figure 1. Inference in graphical 
models embedded in neural activity.
A . A probabi l is t ic graphical model 
represents direct relationships (conditional 
dependencies) amongst many variables. 
Here this is depicted as a factor graph, with 
circles showing variables xi and squares 
showing interactions ψ between subsets of 
variables. Three variable nodes and two 
interaction nodes are highlighted. Here we 
depict a graphical model which does not 
naturally describe causality, but this can be 
readily generalized to allow one-way 
interactions across time. B. Illustration of 
our neural inference model. Statistics that 
encode probabilities over latent variables 
are low-dimensional properties embedded 
in high-dimensional spatiotemporal neural 
activity patterns. As neuronal activities 
evolve over time, these patterns exchange 
information along a sparse interaction graph 
that models the joint distribution over latent 
variables. The neural dynamics thereby 
represent the dynamics of probabilistic 
inference.

Probabilistic inference and Population codes
Probabilistic inference: Drawing conclusions based 
on ambiguous observations. Typical inference 
problems include finding the marginal probability of 
a task-relevant variable, or finding the most 
probable explanation of observed data.
Probabilistic computation: Transformation of signals 
in a manner consistent with rules of probability and 
statistics, especially through appropriate sensitivity 
to uncertainty (Ma 2012).
Latent variables (also called hidden or causal 
variables): quantities whose value cannot be directly 
observed, yet determine observations. Latent 
variables may be task-relevant or irrelevant 
(nuisance), depending on the task.
Probabilistic graphical model: a decomposition of a 
probability distribution as a product of functions that 
describe interactions between subsets of variables. 
One useful such model is a factor graph (Figure 1A) 
that represents a structured probability distribution 
P(xα) = ∏α ψα(xα) where x=(x1,…,xn) is a vector of 

all variables and xα is a subset of variables that 
interact through the function, or factor, ψα(xα).
Statistical interaction: dependency between two 
variables that cannot be explained by other 
observed covariates. This may be generated by real 
causal interactions in the world, or due to some 
unobserved latent variables.
Higher-order interaction: A nonlinear statistical 
interaction between variables. An especially 
interesting case is when three or more variables 
interact. This leads naturally to contextual gating, 
whereby one variable (the ‘context’) determines 
whether other variables interact. See (Ranzato and 
Hinton 2010) for example.
Message-passing algorithm: An iterative sequence 
of computations that performs a global computation 
by operating locally on statistical information 
(‘messages’) conveyed along a probabilistic 
graphical model.
Population code: Representation of a sensory, 
motor, or latent variable by the collective activity of 

many neurons. We can estimate the information 
content of a population by optimal decoding.
Information-limiting correlations (informally, ‘bad 
noise’): Covarying noise fluctuations in large 
populations that are indistinguishable from changes 
in the encoded variable. These arise when sensory 
signals are embedded in a higher-dimensional 
space, or when suboptimal upstream processing 
throws away extensive amounts of information. 
These noise correlations cannot be averaged away 
by adding more neurons (Moreno-Bote et al. 2014).
Redundancy: An extreme degeneracy when 
different signals are perfectly interchangeable. If two 
neuronal populations inherit the same limited 
information from an upstream source, then either 
population can be decoded separately, or the two 
can be averaged, and the result is the same.
Robustness: Insensitivity to variations in network 
weights. A computation is robust whenever 
uncertainty added by suboptimal processing is 
much smaller than the intrinsic uncertainty caused 
by information-limiting noise.
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e x a m p l e , u n l i k e 
pervasive models of 
sparse image coding 
(Olshausen and Field 
1997), natural images 
are not generated as 
a sum of images. 
I n s t e a d m a n y 
statistical features of 
natural images arise 
from the occlusion of 

objects (Pitkow 2010) and the multiplicative absorption of light 
(Wainwright and Simoncelli 2000).

How are these probabilistic graphical models represented 
by neural activity? Information about each sensory variable is 
spread across spiking activity of many neurons with similar 
stimulus sensitivities. Conversely, neurons are also tuned to 
many different features of the world (Rigotti et al. 2013). 
Together, these facts mean that the brain uses a distributed and 
multiplexed code.

There are several competing models of how neurons 
encode probabilities. In spatial representations of probability, 
the encoded probability distribution is determined by the spatial 
pattern of which neurons are active (Ma et al. 2006; Jazayeri 
and Movshon 2006; Savin and Denève 2014; Rao 2004). For 
example, in linear probabilistic population codes, every neural 
spike adds log-probability to some interpretations of a scene, 
so more spikes typically means more confidence (Ma et al.
2006; Jazayeri and Movshon 2006).

In temporal representations of probability, such as the 
sampl ing hypothesis (Hoyer and Hyvär inen 2003) 
instantaneous neural activity represents a single interpretation, 
without uncertainty. Probabilities are reflected instead by the 
set of interpretations over time (Hoyer and Hyvärinen 2003; 
Berkes et al. 2011; Moreno-Bote et al. 2011; Buesing et al. 
2011; Haefner et al. 2016; Orbán et al. 2016). These models 

have different advantages and disadvantages, and account for 
different aspects of experimental observations.

Neurons can also participate in both spatial and temporal 
patterns: a temporal code over feature amplitudes could also 
serve as a spatial code over task variables, depending on how 
the neural signals are decoded. In a similar vein, neurons can 
participate in multiple spatial codes, with different projections of 
population activity encoding biases and precisions (Ma et al. 
2006; Ma 2010; Beck et al. 2011) about distinct variables 
(Figure 1B, Denève et al. 2007; Beck et al. 2012; Raju and 
Pitkow 2016).

It is also possible to have a spatiotemporal representation 
that encodes some aspects of uncertainty in both spatial 
patterns and their changes over time (Lee and Mumford 2003; 
Savin and Denève 2014). For example, a temporal mixture of 
probabilistic population codes could use spatial encoding for 
precise modes, and fluctuate over time to allow for multiple 
interpretations.

Any of these representations will have a limit to the 
information it encodes, whether about estimates of latent 
variables or a distribution over them. This information limit may 
arise at the sensory input itself, or may be worsened by 
biological constraints or suboptimal computation (Beck et al. 
2012; Babadi and Sompolinsky 2014). Once signals enter the 
brain, the neural representation expands massively, engaging 
many times more neurons than sensory receptors. Despite the 
large increase in the number of neurons, the brain cannot 
encode more information than it receives, so all of these extra 
neurons can at best recode the relevant signals in a new form 
(Figure 2B), and may lose information (Babadi and 
Sompolinsky 2014). The result is that cortical codes are highly 
redundant (Zohary et al. 1994; Moreno-Bote et al. 2014; Pitkow 
et al. 2015), essentially possessing many copies of the same 
information in different groups of neurons. Below we explain 
how the resultant redundancy has a major impact on how we 
should think about and describe neural computation.
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Figure 2. Nonlinearity and redundancy in neural computation
A: The classification task of separating yellow from blue cannot be accomplished by linear 
operations, because the task-relevant variable (color) is entangled with a nuisance variable 
(horizontal position). After embedding the data nonlinearly into a higher-dimensional space, the task-
relevant variable becomes linearly separable. B: Signals from the sensory periphery have limited 
information content, illustrated here by a cartoon tiling of an abstract stimulus space. Each square 
tile represents just-noticeable differences between responses, i.e. the uncertainty or  limited 
resolution at which the responses can be reliably discriminated due to limited sampling and noise. 
When sensory signals are transformed and embedded into a higher-dimensional space, the 
uncertainty is processed exactly the same way. This produces a redundant population code with 
information-limiting high-order correlations (Moreno-Bote et al. 2014, Yang and Pitkow 2015), 
leading to just-noticeable differences between cortical responses that are tilted in the cortical 
response space. C: In such a redundant code, the precise nonlinear transformations of individual 
neurons (red) are just one of many ways to accomplish a given nonlinear transformation of the 
encoded variable. Since the fine details do not matter, it is valuable to model the more abstract level 
where the nonlinearity affects the information content. For this purpose, simple nonlinearities (e.g. 
polynomials) may be a convenient representation. However, the most natural nonlinearities to 
examine are those statistics that are tuned to the task-relevant variables. In complex tasks, these 
statistics may be complicated functions of the neural responses, so many layers of nonlinearity may 
be warranted.
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Recoding: Inference by message-passing

Natural tasks require nonlinear computation, whether 
probabilistic or not, because most nuisance variables are 
entangled with task-relevant variables (DiCarlo and Cox 2007). 
Figure 2A shows a simple example that illustrates how 
nonlinear computation can allow subsequent linear computation 
to perform well. The total postsynaptic input to a neuron can be 
well described as linear sums of the presynaptic activities. This 
means that upstream nonlinearities allow such a neuron to 
implement complex classifications.

Ethological tasks require far more complex nonlinearities to 
untangle  task-relevant properties from nuisance variables. In 
principle, any untangling can be accomplished by a simple 
network with one layer of nonlinearities, since this architecture 
is a universal function approximator—both for feedforward nets 
(Cybenko 1989; Hornik 1991) and recurrent nets (Schäfer and 
Zimmerman 2007). However, in practice this can be more 
easily accomplished by a ‘deep’ cascade of simpler nonlinear 
transformations. This may be because the parameters are 
easier to learn, because the hierarchical structure imposed by 
the deep model are better matched to natural inputs (Montúfar 
et al. 2014), because certain representations use brain 
resources more economically, or all of the above. Indeed, 
trained artificial deep neural networks have notable similarities 
with biological neural networks (Yamins et al. 2014).

To what extent are these nonlinear networks probabilistic? 
One can trivially interpret neural responses as encoding 
probabilities, because neuronal responses differ upon repeated 
presentations of the same stimulus and according to Bayes’ 
rule that means that any given neural response could arise 
from multiple different stimuli. But to actually use that encoding 
to perform probabilistic inference (exactly or approximately), the 
brain must transform its information in a manner that accounts 
for trial-by-trial changes in uncertainty (Ma 2012). Thus the 
relevance of encoded probabilities is inextricably linked to their 
use. For this reason, the choice of task is critical to understand 
recoding: one can only test neural models of probabilistic 
inference in tasks where uncertainty varies over time and this 
variation affects behavior.

Exact inference in probabilistic models is generally 
intractable except in special cases. Many algorithms for 
inference in probabilistic graphical models are based on 
transmitting information about probability distributions along the 
graph of interactions. These algorithms go by the name of 
‘message-passing’ algorithms, because the information they 
convey between nodes can be viewed as messages. This 
broad class of algorithms includes belief propagation (Pearl 
1988), expectation propagation (Minka 2001), mean-field 
inference, and other types of variational inference (Wainwright 
and Jordan 2008). Even some forms of sampling (Geman and 
Geman 1984; Lee and Mumford 2003) can be viewed as 
message-passing algorithms with a random component. Each 
algorithm is defined by how incoming information is combined 
and how outgoing information is selected. The differences 
between algorithms reflect different choices of local 
approximations for intractable global computations. For 

instance, belief propagation treats all incoming messages as 
independent, even if they are not. Some randomness may be 
useful to represent and compute with distributions (Hinton and 
Sejnowski 1983; Hoyer and Hyvärinen 2003) as well as 
overcome blind spots in suboptimal message-passing 
algorithms (Pitkow et al. 2011). Amongst the diverse 
possibilities, the commonality is that recurrent nonlinear 
transformations disseminate statistics along a graph that 
reflects direct interactions between latent variables.

Mathematically speaking, message-passing algorithms 
operate on these statistical summaries of latent variables. But 
in any practical implementation on a computer, the algorithms 
operate on binary strings that represent the underlying 
variables. The best way to understand the computation is not to 
examine the transformation of individual bits, but to look instead 
at the transformation of the variables those bits encode. 
Likewise, in the brain, we propose that it is more fundamental 
to describe the nonlinear transformation of encoded variables 
than to describe the detailed nonlinear response properties of 
individual neurons (Figure 1B) (Kriegeskorte et al. 2008; Yang 
and Pitkow 2015; Raju and Pitkow 2016), although the two 
nonlinearities can be related. Since neural network 
computations can implement computationally useful 
transformations in multiple ways, we should therefore focus on 
the shared properties of equivalent computations. This 
abstracts away the fine implementation details while preserving 
the essential properties of the nonlinear computation (see Box, 
Figure 2C). This is a valid and quantifiable abstraction in 
redundant codes (Figure 2B, Pitkow et al. 2014; Yang and 
Pitkow 2015).

Although we extoll the virtues of abstracting away from 
individual neuronal nonlinearities, nonetheless there may be 
certain functions that are difficult to implement as a combination 
of generic nonlinearities. For instance, both a quadratic 
nonlinearity and divisive normalization can be implemented as 
a sum of sigmoidally transformed inputs, but the latter requires 
a much larger number of neurons (Raju and Pitkow 2015). We 
speculate that cell types are hard-wired with specialized 
connectivity (Kim et al. 2014; Jiang et al. 2015) in order to 
accomplish useful operations, like divisive normalization, that 
are harder to learn by adjusting synapses between arbitrarily 
connected neurons.

Decoding: Probabilistic control
If an animal never guides any action by task-relevant 

information encoded by its neural populations, then it doesn’t 
matter that neurons encode that information, or even if the 
network transforms it the right way. Thus it is critical to measure 
how the neural representations relate to behavior. Ideally, we 
would like to predict variations in behavior from fluctuations in 
neural activity.

Choosing a good action can be formulated as a control 
problem, where the animal aims to maximize expected utility, 
i.e. to get the best long-term subjective benefit while weighing 
uncertainty. Maximizing utility involves building not only a model 
of the external world, but also a model of the animal’s causal 
influence on it.
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Because the world is uncertain, an animal may choose 

actions that have a low probability of gaining a reward directly, 
but which gather enough predictive information to increase the 
reward probability in the future (Sutton and Barto 1998; Bialek 
et al. 2001). This tradeoff between exploration and exploitation 
is a key element of such natural behaviors as foraging 
(Charnov 1976, Stephens and Krebs 1986).

The brain appears to use multiple strategies to map its 
beliefs onto actions, depending on the task and the animal’s 
ability to model the task structure. Multiple brain areas and 
neurotransmitters have been implicated in both learning and 
using these strategies (Sutton and Barto 1998; Rao 2010; Yu 
and Dayan 2005). Probabilistic inference appears to play a 
major role in guiding action, which would make our theory of 
statistics flowing through redundant population codes especially 
useful for understanding computation all the way from 
encoding, through recoding, to decoding.

From Theory to Experiment
If this theory of neural computation is correct, how could we 

test it? This general-purpose computation can best be revealed 
in concrete naturalistic tasks with interesting interactions. 
However, truly natural stimuli are too complex, and too filled 
with uncontrolled and indescribable nuisance variations, to 
make good computational theories (Rust and Movshon 2005). 
On the other hand, things should be made “as simple as 
possible, but no simpler” (Prausnitz 2002). We want to 
understand the remarkable properties of the brain — especially 
those aspects that still go far beyond the piecewise-linear fitting 
of impressively successful deep networks (Krizhevsky et al. 
2012). This means we need to challenge it to be flexible, to 
adjust processing dynamically. This requires us to find a happy 
medium: tasks that are neither too easy nor too hard.

To reveal the brain’s internal model, good experimental 
tasks must require predictions — actions that cannot be based 
on current evidence but on extrapolations into the future. 
Prediction is hard, especially about the future (Shapiro 2006). 
Ergo, prediction tasks typically involves significant uncertainty, 
which gives us the opportunity to measure the neural substrate 
of probabilistic inference.

To make this work, we need some fairly big data. Such data 
is now becoming accessible. Large-scale recording technology 
allows us to monitor up to a thousand neurons at once 
(Stevenson and Körding 2011). Efforts are underway to record 
from a million neurons simultaneously sometime in the next 
decade (Alivisatos et al. 2015). Chronic recordings give us 
more data to judge long-term shifts in redundant codes (Sadtler 
et al. 2014). Biomarkers such as pupilometry and motion 
tracking provide additional observations that we know influence 
neural activity (Reimer et al. 2014). Wireless transmission and 
neurologging allow us to observe the brain activity of 
untethered animals, who are then freer to pursue more natural 
behavioral strategies.

How should we analyze all of this rich data to better 
understand the brain?

We expect that much of the brain's machinery is dedicated 
to attributing dynamic latent causes to observations, and using 

them to choose appropriate actions. To understand this 
process, we need some experimental handle on the latent 
variables we expect to see. Inferring latent variables requires 
perceptual models, and we measure an animal’s percept 
through its behavior, so we need behavioral models. We call 
attention to two types here. The first is a black-box model, such 
as an artificial recurrent neural network trained on a task. One 
can compare then the structure of the artificial network activity 
to the structure of real brain activity. If representational 
similarity (Kriegeskorte et al. 2008) between them suggests that 
the solutions are similar, one can then analyze the fully-
observable artificial machinery to gain some insights into neural 
computation. This approach has been used fruitfully by (Mante 
et al. 2013; Yamins et al. 2014). However, such models are 
difficult to interpret without some external guess about the 
relevant latent variables and how they influence each other. In 
simple tasks, the relevant latent variables may be intuitively 
obvious. In complex tasks we may not know how to interpret 
the computation beyond the similarity to the artificial network 
(Yamins et al. 2014), which makes it hard to understand and 
generalize. Ultimately, we need some principled way to 
characterize the latent variables.

This leads us to the second type of behavioral model: 
optimal control. Such a model uses probabilistic inference to 
identify the state of time-varying latent variables, their 
interactions, and the actions that maximize expected value. 
Clearly, animals are not universally optimal. Nonetheless, for 
some tasks, animals may understand the structure of the task 
while mis-estimating its parameters. Consequently, we can use 
the optimal structure to direct our search for computational 
features in neural networks.

Figure 3 shows a schematic for how one can use a 
behavioral model with identifiable latent variables to interpret 
neural activity. Step 1 is to find the encoding, that is, the 
distributed neural representations of the latent variables. In the 
context of statistical inference, these representations ought to 
include not only guesses about the true state, but also 
uncertainties about those states. This encoding provides us 
with a substantial dimensionality reduction, allowing us to 
abstract away many fine details about neural encoding and 
concentrate on the information content. Based on that 
dimensionality reduction, we can then predict the latent 
variables in new neural recordings that were not used to find 
the encoding. Step 2 is to measure the interactions between 
the estimates and uncertainties about latent variables, which 
determines the process of recoding. Statistical inference via 
message-passing defines how these quantities should interact, 
and can generate strong predictions. The brain may have 
learned clever tricks for this inference, which we can measure 
experimentally by computing the interactions between the 
brain’s internal estimates — at least, those we estimated from 
neural data (yes, estimates of estimates). Step 3 is to use brain 
activity and our model of interactions to predict actions, i.e. to 
predict decoding. This will be particularly revealing during 
periods of greatest uncertainty, since this is when the sensory 
stimuli are weakest and the animal’s internal model will be most 
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valuable. This is a generalization of the choice correlations in 
simple tasks that we described above.

In essence, this analysis framework allows one to work at 
the representational level, a step removed from the neural 
mechanisms, to measure the encoding, recoding, and decoding 
algorithm of the brain.

Task design to reveal flexible probabilistic computation
To understand flexible brain computations, the tasks we 

present to an animal should satisfy certain requirements. First, 
to understand nonlinear computations, one should include 
nuisance variables that the brain must untangle. Second, to 
reveal probabilistic inference, which hinges on appropriate 
treatment of uncertainty, one must manipulate uncertainty 
experimentally. Third, to expose an animal’s internal model, the 
task should require the animal to predict the future, for 
otherwise the animal can rely upon visible evidence which can 
compensate for any false beliefs an animal might harbor. A task 
based on prediction also makes it simpler to identify neuronal 
fluctuations that relate directly to behavior and not to the input. 
Fourth, the task should be naturalistic, but neither too easy nor 
too hard. This has the best chances of keeping the brain 
engaged and the animal incentivized.

Based on these considerations, we commend foraging as 
an excellent candidate task. In foraging, an animal searches for 

rewards based on sensory cues in an uncertain environment, 
and it can take distinct actions to acquire either rewards or 
information. Uncertainty about reward encourages an 
exploration-exploitation tradeoff that provides evidence about 
the animal’s predictions and thus about its internal model. 
Foraging is naturalistic and allows flexible animal behavior, 
while allowing experimenters to control the contingencies that 
indicate value. It includes components of perceptual decision-
making and thus leverages our existing knowledge about 
neural circuits. These virtues would address the problems 
arising from overly simple tasks and would help us refine our 
understanding of the neural basis of behavior.

Conclusion
In this paper, we proposed that the brain naturally performs 

probabilistic inference, and critiqued overly simple tasks as 
being ill suited to expose the inferential computations that make 
the brain special. We introduced a hypothesis about 
computation in cortical circuits. Our hypothesis has three parts. 
First, overlapping patterns of population activity encode 
statistics that summarize both estimates and uncertainties 
about latent variables. Second, the brain specifies how those 
variables are related through a sparse probabilistic graphical 
model of the world. Third, recurrent circuitry implements a 
nonlinear message-passing algorithm that selects and localizes 
the brain's statistical summaries of latent variables, so that all 
task-relevant information is actionable.

We also suggested experiments that could provide 
evidence about this hypothesis. These experiments should be 
based on naturalistic tasks that require the animal to predict 
uncertain future rewards, and thereby reveal its internal model 
of the environment. By recording from many neurons across 
multiple brain areas, and relating the activity to the stimulus, 
predicted latent variables, and actions, we can analyze the 
neuronal interactions that constitute neural computation.

Finally, we emphasized the advantage in studying the 
computation at the level of neural population activity, rather 
than at the level of single neurons or membrane potentials: If 
the brain does use redundant population codes, then many fine 
details of neural processing don’t matter for computation. 
Instead it can be beneficial to characterize computation at a 
more abstract level, operating on variables encoded by 
populations, rather than on the substrate.
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Figure 3. Schematic for understanding distributed codes
A behavioral model describes task-relevant latent variables, how they 
interact statistically, and the algorithm by which they guide actions. A 
corresponding model of the brain quantifies the neural encoding of 
those variables, the interactions between them, and how they relate to 
behavior. A good match between the behavioral and brain models 
provides evidence that these neural recordings reflect the encoding, 
recoding and decoding processes. A poor match implies either that our 
behavioral model is wrong such that the brain has found other latent 
variables that explain its observations, or that we are not recording 
from populations that encode the predicted latent variables and 
mediate their interactions. We can then revise the behavioral model 
based on these observations, and either record from other brain areas 
or simplify the task to focus on latent variables that are well 
represented in the recorded areas.
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