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Abstract

Behavioral experiments on humans and animals suggest that the brain performs
probabilistic inference to interpret its environment. Here we present a new general-
purpose, biologically-plausible neural implementation of approximate inference.
The neural network represents uncertainty using Probabilistic Population Codes
(PPCs), which are distributed neural representations that naturally encode prob-
ability distributions, and support marginalization and evidence integration in a
biologically-plausible manner. By connecting multiple PPCs together as a proba-
bilistic graphical model, we represent multivariate probability distributions. Ap-
proximate inference in graphical models can be accomplished by message-passing
algorithms that disseminate local information throughout the graph. An attractive
and often accurate example of such an algorithm is Loopy Belief Propagation
(LBP), which uses local marginalization and evidence integration operations to
perform approximate inference efficiently even for complex models. Unfortunately,
a subtle feature of LBP renders it neurally implausible. However, LBP can be
elegantly reformulated as a sequence of Tree-based Reparameterizations (TRP)
of the graphical model. We re-express the TRP updates as a nonlinear dynamical
system with both fast and slow timescales, and show that this produces a neurally
plausible solution. By combining all of these ideas, we show that a network of
PPCs can represent multivariate probability distributions and implement the TRP
updates to perform probabilistic inference. Simulations with Gaussian graphical
models demonstrate that the neural network inference quality is comparable to
the direct evaluation of LBP and robust to noise, and thus provides a promising
mechanism for general probabilistic inference in the population codes of the brain.

1 Introduction

In everyday life we constantly face tasks we must perform in the presence of sensory uncertainty. A
natural and efficient strategy is then to use probabilistic computation. Behavioral experiments have
established that humans and animals do in fact use probabilistic rules in sensory, motor and cognitive
domains [1, 2, 3]. However, the implementation of such computations at the level of neural circuits is
not well understood.

In this work, we ask how distributed neural computations can consolidate incoming sensory in-
formation and reformat it so it is accessible for many tasks. More precisely, how can the brain
simultaneously infer marginal probabilities in a probabilistic model of the world? Previous efforts
to model marginalization in neural networks using distributed codes invoked limiting assumptions,
either treating only a small number of variables [4], allowing only binary variables [5, 6, 7], or
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restricting interactions [8, 9]. Real-life tasks are more complicated and involve a large number of
variables that need to be marginalized out, requiring a more general inference architecture.

Here we present a distributed, nonlinear, recurrent network of neurons that performs inference
about many interacting variables. There are two crucial parts to this model: the representation and
the inference algorithm. We assume that brains represent probabilities over individual variables
using Probabilistic Population Codes (PPCs) [10], which were derived from using Bayes’ Rule
on experimentally measured neural responses to sensory stimuli. Here for the first time we link
multiple PPCs together to construct a large-scale graphical model. For the inference algorithm, many
researchers have considered Loopy Belief Propagation (LBP) to be a simple and efficient candidate
algorithm for the brain [11, 12, 13, 14, 8, 5, 7, 6]. However, we will discuss one particular feature of
LBP that makes it neurally implausible. Instead, we propose that an alternative formulation of LBP
known as Tree-based Reparameterization (TRP) [15], with some modifications for continuous-time
operation at two timescales, is well-suited for neural implementation in population codes.

We describe this network mathematically below, but the main conceptual ideas are fairly straight-
forward: multiplexed patterns of activity encode statistical information about subsets of variables,
and neural interactions disseminate these statistics to all other encoded variables for which they are
relevant.

In Section 2 we review key properties of our model of how neurons can represent probabilistic
information through Probabilistic Population Codes. Section 3 reviews graphical models, Loopy
Belief Propagation, and Tree-based Reparameterization. In Section 4, we merge these ingredients
to model how populations of neurons can represent and perform inference on large multivariate
distributions. Section 5 describes experiments to test the performance of network. We summarize
and discuss our results in Section 6.

2 Probabilistic Population Codes

Neural responses r vary from trial to trial, even to repeated presentations of the same stimulus x.
This variability can be expressed as the likelihood function p(r|x). Experimental data from several
brain areas responding to simple stimuli suggests that this variability often belongs to the exponential
family of distributions with linear sufficient statistics [10, 16, 17, 4, 18]:

p(r|x) = φ(r) exp(h(x) · r), (1)

where h(x) depends on the stimulus-dependent mean and fluctuations of the neuronal response and
φ(r) is independent of the stimulus. For a conjugate prior p(x), the posterior distribution will also
have this general form, p(x|r) ∝ exp(h(x) · r). This neural code is known as a linear PPC: it is
a Probabilistic Population Code because the population activity collectively encodes the stimulus
probability, and it is linear because the log-likelihood is linear in r. In this paper, we assume responses
are drawn from this family, although incorporation of more general PPCs with nonlinear sufficient
statistics T(r) is possible: p(r|x) ∝ exp(h(x) · T(r)).
An important property of linear PPCs, central to this work, is that different projections of the
population activity encode the natural parameters of the underlying posterior distribution. For
example, if the posterior distribution is Gaussian (Figure 1), then p(x|r) ∝ exp

(
− 1

2x
2a · r + xb · r

)
,

with a · r and b · r encoding the linear and quadratic natural parameters of the posterior. These
projections are related to the expectation parameters, the mean and variance, by µ = b·r

a·r and σ2 = 1
a·r .

A second important property of linear PPCs is that the variance of the encoded distribution is inversely
proportional to the overall amplitude of the neural activity. Intuitively, this means that more spikes
means more certainty (Figure 1).

The most fundamental probabilistic operations are the product rule and the sum rule. Linear PPCs
can perform both of these operations while maintaining a consistent representation [4], a useful
feature for constructing a model of canonical computation. For a log-linear probability code like
linear PPCs, the product rule corresponds to weighted summation of neural activities: p(x|r1, r2) ∝
p(x|r1)p(x|r2)⇐⇒ r3 = A1r1 +A2r2. In contrast, to use the sum rule to marginalize out variables,
linear PPCs require nonlinear transformations of population activity. Specifically, a quadratic
nonlinearity with divisive normalization performs near-optimal marginalization in linear PPCs [4].
Quadratic interactions arise naturally through coincidence detection, and divisive normalization is a
nonlinear inhibitory effect widely observed in neural circuits [19, 20, 21]. Alternatively, near-optimal
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marginalizations on PPCs can also be performed by more general nonlinear transformations [22]. In
sum, PPCs provide a biologically compatible representation of probabilistic information.
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Figure 1: Key properties of linear PPCs. (A) Two single trial population responses for a particular
stimulus, with low and high amplitudes (blue and red). The two projections a · r and b · r encode the
natural parameters of the posterior. (B) Corresponding posteriors over stimulus variables determined
by the responses in panel A. The gain or overall amplitude of the population code is inversely
proportional to the variance of the posterior distribution.

3 Inference by Tree-based Reparameterization

3.1 Graphical Models

To generalize PPCs, we need to represent the joint probability distribution of many variables. A
natural way to represent multivariate distributions is with probabilistic graphical models. In this work,
we use the formalism of factor graphs, a type of bipartite graph in which nodes representing variables
are connected to other nodes called factors representing interactions between ‘cliques’ or sets of
variables (Figure 2A). The joint probability over all variables can then be represented as a product
over cliques, p(x) = 1

Z

∏
c∈C ψc(xc), where ψc(xc) are nonnegative compatibility functions on the

set of variables xc = {xc|c ∈ C} in the clique, and Z is a normalization constant. The distribution of
interest will be a posterior distribution p(x|r) that depends on neural responses r. Since the inference
algorithm we present is unchanged with this conditioning, for notational convenience we suppress
this dependence on r.

In this paper, we focus on pairwise interactions, although our main framework generalizes naturally
to richer, higher-order interactions. In a pairwise model, we allow singleton factors ψs for variable
nodes s in a set of vertices V , and pairwise interaction factors ψst for pairs (s, t) in the set of edges
E that connect those vertices. The joint distribution is then

p(x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt) (2)

3.2 Belief Propagation and its neural plausibility

The inference problem of interest in this work is to compute the marginal distribution for each
variable, ps(xs) =

∫
x\xs

p(x) d(x\xs). This task is generally intractable. However, the factorization
structure of the distribution can be used to perform inference efficiently, either exactly in the case of
tree graphs, or approximately for graphs with cycles. One such algorithm is called Belief Propagation
(BP) [11]. BP iteratively passes information along the graph in the form of messages mst(xt) from
node s to t, using only local computations that summarize the relevant aspects of other messages
upstream in the graph:

mn+1
st (xt) =

∫
xs

dxs ψs(xs)ψst(xs, xt)
∏

u∈N(s)\t

mn
us(xs) bs(xs) ∝ ψs

∏
u∈N(s)

mus(xs) (3)

where n is the time or iteration number, and N(s) is the set of neighbors of node s on the graph. The
estimated marginal, called the ‘belief’ bs(xs) at a node s, is proportional to the local evidence at
that node ψs(xs) and all the messages coming into node s. Similarly, the messages themselves are
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determined self-consistently by combining incoming messages — except for the previous message
from the target node t.

This message exclusion is critical because it prevents evidence previously passed by the target node
from being counted as if it were new evidence. This exclusion only prevents overcounting on a tree
graph, and is unable to prevent overcounting of evidence passed around loops. For this reason, BP is
exact for trees, but only approximate for general, loopy graphs. If we use this algorithm anyway, it is
called ‘Loopy’ Belief Propagation (LBP), and it often has quite good performance [12].

Multiple researchers have been intrigued by the possibility that the brain may perform LBP [13,
14, 5, 8, 7, 6], since it gives “a principled framework for propagating, in parallel, information and
uncertainty between nodes in a network” [12]. Despite the conceptual appeal of LBP, it is important
to get certain details correct: in an inference algorithm described by nonlinear dynamics, deviations
from ideal behavior could in principle lead to very different outcomes.

One critically important detail is that each node must send different messages to different targets to
prevent overcounting. This exclusion can render LBP neurally implausible, because neurons cannot
readily send different output signals to many different target neurons. Some past work simply ignores
the problem [5, 7]; the resultant overcounting destroys much of the inferential power of LBP, often
performing worse than more naïve algorithms like mean-field inference. One better option is to
use different readouts of population activity for different targets [6], but this approach is inefficient
because it requires many readout populations for messages that differ only slightly, and requires
separate optimization for each possible target. Other efforts have avoided the problem entirely by
performing only unidirectional inference of low-dimensional variables that evolve over time [14].
Appealingly, one can circumvent all of these difficulties by using an alternative formulation of LBP
known as Tree-based Reparameterization (TRP).

3.3 Tree-based Reparameterization

Insightful work by Wainwright, Jakkola, and Willsky [15] revealed that belief propagation can
be understood as a convenient way of refactorizing a joint probability distribution, according to
approximations of local marginal probabilities. For pairwise interactions, this can be written as

p(x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt) =
∏
s∈V

Ts(xs)
∏

(s,t)∈E

Tst(xs, xt)

Ts(xs)Tt(xt)
(4)

where Ts(xs) is a so-called ‘pseudomarginal’ distribution of xs and Tst(xs, xt) is a joint pseu-
domarginal over xs and xt (Figure 2A–B), where Ts and Tst are the outcome of Loopy Belief
Propagation. The name pseudomarginal comes from the fact that these quantities are always locally
consistent with being marginal distributions, but they are only globally consistent with the true
marginals when the graphical model is tree-structured.

These pseudomarginals can be constructed iteratively as the true marginals of a different joint
distribution pτ (x) on an isolated tree-structured subgraph τ . Compatibility functions ψ from factors
remaining outside of the subgraph are collected in a residual term rτ (x). This regrouping leaves the
joint distribution unchanged:

p(x) = pτ (x)rτ (x) (5)

The factors of pτ are then rearranged by computing the true marginals on its subgraph τ , again
preserving the joint distribution. In subsequent updates, we iteratively refactorize using the marginals
of pτ along different tree subgraphs τ (Figure 2C).

p(x)=pi(x)ri(x) p(x)=pj(x)r j(x)

x1 x2 x3 x1 x2 x3

A

Original Iteration i Iteration jTree reparameterized

B C

Figure 2: Visualization of tree reparameterization. (A) A probability distribution is specified by
factors {ψs, ψst} on a tree graph. (B) An alternative parameterization of the same distribution in
terms of the marginals {Ts, Tst}. (C) Two TRP updates for a 3×3 nearest-neighbor grid of variables.
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Typical LBP can be interpreted as a sequence of local reparameterizations over just two neighboring
nodes and their corresponding edge [15]. Pseudomarginals are initialized at time n = 0 using the
original factors: T 0

s (xs) ∝ ψs(xs) and T 0
st(xs, xt) ∝ ψs(xs)ψt(xt)ψst(xs, xt). At iteration n+ 1,

the node and edge pseudomarginals are computed by exactly marginalizing the distribution built from
previous pseudomarginals at iteration n:

Tn+1
s ∝ Tns

∏
u∈N(s)

1

Tns

∫
Tnsu dxu Tn+1

st ∝ Tnst(∫
Tnst dxt

) (∫
Tnst dxs

)Tn+1
s Tn+1

t (6)

Notice that, unlike the original form of LBP, operations on graph neighborhoods
∏
u∈N(s) do not

differentiate between targets.

4 Neural implementation of TRP updates

4.1 Updating natural parameters

TRP’s operation only requires updating pseudomarginals, in place, using local information. These are
appealing properties for a candidate brain algorithm. This representation is also nicely compatible
with the structure of PPCs: different projections of the neural activity encode the natural parameters
of an exponential family distribution. It is thus useful to express the pseudomarginals and the TRP
inference algorithm using vectors of sufficient statistics φc(xc) and natural parameters θnc for each
clique: Tnc (xc) = exp (θnc · φc(xc)). For a model with at most pairwise interactions, the TRP
updates (6) can be expressed in terms of these natural parameters as

θn+1
s = (1− ds)θns +

∑
u∈N(s)

gV (θ
n
su) θn+1

st = θnst +Qsθ
n+1
s +Qtθ

n+1
t + gE(θ

n
st) (7)

where ds is the number of neighbors of s, and Qs, gV and gE are matrices and nonlinear functions
(for vertices V and edges E) that are determined by the particular graphical model (see below). Since
the natural parameters reflect log-probabilities, the product rule for probabilities becomes a linear
sum in θ, while the sum rule for probabilities must be implemented by nonlinear operations g on θ.

In the concrete case of a Gaussian graphical model, the joint distribution is given by p(x) ∝
exp (− 1

2x
>Ax+ b>x), where A and b are the natural parameters, and the linear and quadratic

functions x and xx> are the sufficient statistics. When we reparameterize this distribution by
pseudomarginals, we again have linear and quadratic sufficient statistics: two for each node, φs =
(− 1

2x
2
s, xs)

>, and five for each edge, φst = (− 1
2x

2
s, xsxt, − 1

2x
2
t , xs, xt)

>. Each of these vectors
of sufficient statistics has its own vector of natural parameters, θs and θst.

To approximate the marginal probabilities, the TRP algorithm initializes the pseudomarginals to
θ0s = (Ass, bs)

> and θ0st = (Ass, Ast, Att, bs, bt)
>. To update θ, we must extract the matrices Q

and nonlinear functions g that recover the univariate marginal distribution of a bivariate gaussian Tst.
For Tst(xs, xt) ∝ exp

(
− 1

2θ1x
2
s − θ2xsxt − 1

2θ3x
2
t + θ4xs + θ5xt

)
, this marginal is

Ts(xs) =

∫
dxt Tst(xs, xt) ∝ exp

(
−θ1θ3 − θ

2
2

θ3

x2s
2

+
θ4θ3 − θ2θ5

θ3
xs

)
(8)

Using this, we can determine the form of the weight matrices and the nonlinear functions in the TRP
updates (7).

Qs =

(
1 0 0 0 0
0 0 0 1 0

)>
Qt =

(
0 0 1 0 0
0 0 0 0 1

)>
(9)

gV (θ
n
su) =

(
θn1;suθ

n
3;su −

(
θn2;su

)2
θn3;su

,
θn4;suθ

n
3;su − θ

n
2;suθ

n
5;su

θn3;su

)>
(10)

gE(θ
n
st) =

((
θn2;st

)2
θ3;st

, 0,

(
θn2;st

)2
θ1;st

,
θ2;stθ5;st
θ3;st

,
θ2;stθ4;st
θ1;st

)>
where θi;st is the ith element of θst. Notice that these nonlinear functions are all quadratic functions
with a linear divisive normalization.
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4.2 Separation of Time Scales for TRP Updates

An important feature of the TRP updates is that they circumvent the ‘message exclusion’ problem
of LBP. The TRP update for the singleton terms, (6) and (7), includes contributions from all the
neighbors of a given node. There is no free lunch, however, and the price is that the updates at time
n+ 1 depend on previous pseudomarginals at two different times, n and n+ 1. The latter update is
therefore instantaneous information transmission, which is not biologically feasible.

To overcome this limitation, we observe that the brain can use fast and slow timescales τfast � τslow
instead of instant and delayed signals. We convert the update equations to continuous time, and
introduce auxiliary variables θ̃ which are lowpass-filtered versions of θ on a slow timescale: τslow

˙̃
θ =

−θ̃ + θ. The nonlinear dynamics of (7) are then updated on a faster timescale τfast according to

τfastθ̇s = −dsθ̃s +
∑

u∈N(s)

gV (θ̃su) τfastθ̇st = Qsθs +Qtθt + gE(θ̃st) (11)

where the nonlinear terms g depend only on the slower, delayed activity θ̃. By concatenating these
two sets of parameters, Θ = (θ, θ̃), we obtain a coupled multidimensional dynamical system which
represents the approximation to the TRP iterations:

Θ̇ =WΘ+ G(Θ) (12)

Here the weight matrix W and the nonlinear function G inherit their structure from the discrete-time
updates and the lowpass filtering at the fast and slow timescales.

4.3 Network Architecture

To complete our neural inference network, we now embed the nonlinear dynamics (12) into the
population activity r. Since different projections of the neural activity in a linear PPC encode natural
parameters of the underlying distribution, we map neural activity onto Θ by

r = UΘ (13)

where U is a rectangular Nr ×NΘ embedding matrix that projects the natural parameters and their
low-pass versions into the neural response space. These parameters can be decoded from the neural
activity as Θ = U+r, where U+ is the pseudoinverse of U .

Applying this basis transformation to (12), we have ṙ = UΘ̇ = U(WΘ + G(Θ)) = UWU+r +
UG(U+r). We then obtain the general form of the updates for the neural activity

ṙ =WLr + GNL(r) (14)

where WLr = UWU+r and GNL(r) = UG(U+r) correspond to the linear and nonlinear computa-
tional components that integrate and marginalize evidence, respectively. The nonlinear function on r
inherits the structure needed for the natural parameters, such as a quadratic polynomial with a divisive
normalization used in low-dimensional Gaussian marginalization problems [4], but now expanded to
high-dimensional graphical models. Figure 3 depicts the network architecture for the simple graphical
model from Figure 2A, both when there are distinct neural subpopulations for each factor (Figure 3A),
and when the variables are fully multiplexed across the entire neural population (Figure 3B). These
simple, biologically-plausible neural dynamics (14) represent a powerful, nonlinear, fully-recurrent
network of PPCs which implements the TRP update equations on an underlying graphical model.

5 Experiments

We evaluate the performance of our neural network on a set of small Gaussian graphical models
with up to 400 interacting variables. The networks time constants were set to have a ratio of
τslow/τfast = 20. Figure 4 shows the neural population dynamics as the network performs inference,
along with the temporal evolution of the corresponding node and pairwise means and covariances.
The neural activity exhibits a complicated timecourse, and reflects a combination of many natural
parameters changing simultaneously during inference. This type of behavior is seen in neural activity
recorded from behaving animals [23, 24, 25].
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Figure 3: Distributed, nonlinear, recurrent network of neurons that performs probabilistic inference
on a graphical model. (A) This simple case uses distinct subpopulations of neurons to represent
different factors in the example model in Figure 2A. (B) A cartoon shows how the same distribution
can be represented as distinct projections of the distributed neural activity, instead of as distinct
populations. In both cases, since the neural activities encode log-probabilities, linear connections are
responsible for integrating evidence while nonlinear connections perform marginalization.
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Figure 4: Dynamics of neural population activity (left) and the expectation parameters of the posterior
distribution that the population encodes (right) for one trial of the tree model in Figure 2A.

Figure 5 shows that our recurrent neural network accurately infers the marginal probabilities, and
reaches almost the same conclusions as loopy belief propagation. The data points are obtained from
multiple simulations with different graph topologies, including graphs with many loops. Figure 6
verifies that the network is robust to noise even when there are few neurons per inferred parameter;
adding more neurons improves performance since the noise can be averaged away.
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Figure 5: Inference performance of our neural network (blue) and standard loopy belief propa-
gation (red) for a variety of graph topologies, including square grids up to 20 × 20 and densely
connected graphs with up to 25 variables. The expectation parameters (means, covariances) of the
pseudomarginals closely match the corresponding parameters for the true marginals.

6 Conclusion

We have shown how a biologically-plausible nonlinear recurrent network of neurons can repre-
sent a multivariate probability distribution using population codes, and can perform inference by
reparameterizing the joint distribution to obtain approximate marginal probabilities.
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Figure 6: Network performance is robust to noise, and improves with more neurons. (A) Neural
activity performing inference on a 5× 5 square grid, in the presence of independent spatiotemporal
Gaussian noise of standard deviation 0.1 times the standard deviation of each signal. (B) Expectation
parameters (means, variances) of the node pseudomarginals closely match the corresponding parame-
ters for the true marginals, despite the noise. Results are shown for one or five neurons per parameter
in the graphical model, and for no noise (i.e. infinitely many neurons).

Our network model has desirable properties beyond those lauded features of belief propagation. First,
it allows for a thoroughly distributed population code, with many neurons encoding each variable and
many variables encoded by each neuron. This is consistent with neural recordings in which many
task-relevant features are multiplexed across a neural population [23, 24, 25].

Second, the network performs inference in place, without using a distinct neural representation for
messages, and avoids the biological implausibility associated with sending different messages about
every variable to different targets. This virtue comes from exchanging multiple messages for multiple
timescales. It is noteworthy that allowing two timescales prevents overcounting of evidence on loops
of length two (target to source to target). This suggests a novel role of memory in static inference
problems: a longer memory could be used to discount past information sent at more distant times,
thus avoiding the overcounting of evidence that arises from loops of length three and greater. It may
therefore be possible to develop reparameterization algorithms with all the convenient properties of
LBP but with improved performance on loopy graphs.

Previous results show that the quadratic nonlinearity with divisive normalization is convenient and
biologically plausible interpretable, but this precise form is not necessary: other pointwise neuronal
nonlinearities are capable of producing the same high-quality marginalizations in PPCs [22]. In a
distributed code, the precise nonlinear form at the neuronal scale is not important as long as the effect
on the parameters is the same.

More generally, however, different nonlinear computations on the parameters implement different
approximate inference algorithms. The distinct behaviors of such algorithms as mean-field inference,
generalized belief propagation, and others arise from differences in their nonlinear transformations.
Even Gibbs sampling can be described as a noisy nonlinear message-passing algorithm. Although
LBP and its generalizations have strong appeal, we doubt the brain will use this algorithm exactly.
The real nonlinear functions in the brain may implement even smarter algorithms.

To identify the brain’s algorithm, it may be more revealing to measure how information is represented
and transformed in a low-dimensional latent space embedded in the high-dimensional neural responses
than to examine each neuronal nonlinearity in isolation. The present work is directed toward this
challenge of understanding computation in this latent space. It provides a concrete example showing
how distributed nonlinear computation can be distinct from localized neural computations. Learning
this computation from data will be a key challenge for neuroscience. In future work we aim to
recover the latent computations of our network from artificial neural recordings generated by the
model. Successful model recovery would encourage us to apply these methods to large-scale neural
recordings to uncover key properties of the brain’s distributed nonlinear computations.
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