
Exact feature probabilities in images with occlusion
Center for Theoretical Neuroscience, Columbia University, USAXaq Pitkow

To understand the computations of our visual system, it is important to understand also the natural environment it evolved to
interpret. Unfortunately, existing models of the visual environment are either unrealistic or too complex for mathematical
description. Here we describe a naturalistic image model and present a mathematical solution for the statistical relationships
between the image features and model variables. The world described by this model is composed of independent, opaque,
textured objects, which occlude each other. This simple structure allows us to calculate the joint probability distribution of
image values sampled at multiple arbitrarily located points, without approximation. This result can be converted into
probabilistic relationships between observable image features as well as between the unobservable properties that caused
these features, including object boundaries and relative depth. We show that the image model is sufficient to explain a wide
range of natural scene properties. Finally, we discuss the implications of this description of natural scenes for the study of
vision.
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Introduction

A major goal of vision is to identify physical objects in
the world and their attributes. The relevant sensory
evidenceVan imageVis ambiguous. A visual system
must make guesses to interpret this sensory information,
and good guesses should account for the statistics of the
input. Consequently, the statistical structure of natural
images has become a subject of fundamental importance
for applications ranging from computer graphics to
neuroscience: Understanding and exploiting natural regu-
larities should lead to better visual performance and
improved visual representations, whether in image com-
pression or in the brain.
Most previous studies of natural scene statistics have

characterized natural scenes as linear superpositions of
image features. Principal Components Analysis (Hancock,
Baddeley, & Smith, 1992; Liu & Shouval, 1994),
Independent Components Analysis (Bell & Sejnowski,
1997; Olshausen & Field, 1996), wavelet transforms
(Portilla & Simoncelli, 2000), and linear clutter models
(Grenander & Srivastava, 2001; Mumford & Gidas, 2001)
each identify related sets of features that when added
together can reconstitute or approximate a natural image.
Other methods have improved upon these purely linear,
additive descriptions by including multiplicative modulation
(e.g., Gaussian scale mixtures (Wainwright & Simoncelli,
2000) and hierarchically correlated variances (Karklin &
Lewicki, 2005)). These non-linear enhancements are useful
for representing textures, where common variables like
surface properties and illumination intensity and direction
naturally comodulate the contrast of features like local
orientation. Yet because visual images are not caused by

summation but by occlusion, it is important to develop
models of natural images that are constructed using more
accurate non-linear combinations of features (Reinagel &
Laughlin, 2001; Simoncelli & Olshausen, 2001).
We therefore chose a simplified model of natural

images, colorfully known as the dead leaves model
(Matheron, 1975), for which occlusion is fundamental:
The virtual world described by this model is composed of
an infinitely deep stack of randomly positioned, flat
objects (“leaves”) that occlude each other (Figures 1A
and 1B). These objects have attributes of size, shape,
brightness, and texture, each independently drawn from
specified distributions. While the model is only an
approximation to our true physical environment, nonethe-
less it generates images that share many important
attributes with natural images, most obviously the ubiq-
uitous boundaries between relatively homogeneous
regions (Ruderman, 1997). If the object sizes are drawn
from an inverse-cubic power law distribution within finite
upper and lower bounds, the model becomes approx-
imately scale-invariant (Gousseau & Roueff, 2007; Lee,
Mumford, & Huang, 2001; Ruderman, 1997) and repro-
duces several known statistical properties of natural
images, including the spatial power spectrum (Ruderman,
1997) and bivariate distributions of pixel intensities and
wavelet coefficients (Lee et al., 2001). Despite the
demonstrated utility of the model, until now there has
been no way to calculate higher order statistical properties
of interest except by empirical sampling, which cannot
provide the insights that exact results can.
Here we derive an exact solution to the dead leaves

model, by calculating joint probability distributions
explicitly for arbitrary image features. This solution also
provides a principled way to relate the features in a dead
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leaves image to the unobserved object attributes that cause
these features. Since these relationships are precisely what
we rely upon to see, this result thereby elevates the dead
leaves model from an interesting approximation of natural
images to a valuable tool for modeling perceptual
inference and neural computation in the visual system.
To illustrate how this solution helps us understand

natural scenes, we apply it to explain the highly non-
Gaussian probability distributions of edge features. Edges
are important because they describe stimuli to which
neurons in the early visual system are sensitive and
because high-order correlations between them reflect the
physical objects and attributes in the visual world. Since
the functional significance of neural responses to features
can depend on the shape of the feature distribution
(Laughlin, 1981; Sharpee & Bialek, 2007; Zetzsche &
Nuding, 2005), it is important to understand why the
distributions have their observed structure.
First, we look specifically at the marginal, joint, and

conditional distributions of wavelet coefficients, i.e., the
image overlap with localized, oriented filters. In natural
images, those marginal distributions have heavy tails
(Mallat, 1989; Ruderman & Bialek, 1994; Wainwright &
Simoncelli, 2000), and the joint and conditional distribu-
tions have peculiar shapes (diamonds, pillows, bowties)
that depend on the orientation and distance between the
wavelets (Buccigrossi & Simoncelli, 1999; Lee et al.,
2001; Simoncelli & Schwartz, 1999). We show how these
non-Gaussian distributions arise naturally from occlusion
by spatially extended objects, even when the objects
themselves have Gaussian-distributed textures. Second,
we compute the likelihood that a given pair of local object
boundaries comes from the same physical contour. When
estimated empirically from natural images, this likelihood
predicts human judgments about contours (Geisler, Perry,
Super, & Gallogly, 2001). Our solution of the dead leaves

model recovers the empirical statistics but only if one
properly accounts for the relative depths at local bounda-
ries, implicating depth cues in simple judgments about
contours. Finally, we explain how scale invariance and
occlusion interact to reproduce the natural statistical
relationships between edges.

Results

Solving the dead leaves model

The pixels of a dead leaves image are fully determined
by the properties of objects that are at least partially
unoccluded. These properties are drawn independently
from specified distributions over position, depth, size and
shape, and texture. Texture can include both mean
intensity and (possibly correlated) variations about the
mean. When we say that we have solved the dead leaves
model, we mean that we can calculate the joint proba-
bilities of any model variables of interest, whether pixel
intensities or object properties. This would be straightfor-
ward if the image components were related by linear
superposition but is much more difficult due to the strong
non-linearity of occlusion.
The essential property that makes the dead leaves model

tractable is that different objects have independent
attributes. Others have invoked the independence of object
properties to derive the two-point correlation functions
(Ruderman, 1997) and bivariate intensity probabilities
(Lee et al., 2001) using a recursive argument that
accounts for the way nearby objects occlude more distant
ones. We were able to generalize this calculation from
two points to an arbitrary collection of N pixels, for which

Figure 1. Sample images generated by the dead leaves model. We see layers of objects with random sizes, shapes, positions, and
brightnesses that occlude other objects below. (A) All objects are black or white circles with a relatively narrow range of sizes. (B) All
objects are textured ellipses with a broad range of sizes drawn from a distribution proportional to sizej3, producing approximate scale
invariance (Gousseau & Roueff, 2007; Lee et al., 2001; Ruderman, 1997). Straightforward generalizations allow other ensembles of
shape and texture. (C) Illustration of an object membership function . Pixels within a member set of all sampled from the same object.
A sample dead leaves image with several objects (gray circles) and a set of six pixel locations (numbered points) are shown. For this
configuration, the object membership function is = {126ª3ª45}.
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we can now calculate the multivariate joint intensity
distribution. This distribution can then be transformed into
feature probabilities and related to the unobserved object
properties.
If one samples the intensity of a particular dead leaves

image at various locations, each pixel value will be
determined by the texture of whichever object is at the top
of the stack at that location. All pixels that fall into the
same object share its texture and are thereby correlated;
pixels sampling from different objects are independent.
Thus, if we can specify how the pixels are divided
geometrically into objects, then we know the complete
correlation structure for that image.
We can mathematically describe the configuration of

objects at a given set of N pixels by defining an object
membership function, , designating which pixels are
“members” of which objects. (The symbol is the
Hebrew letter mem, chosen to evoke the word member-
ship.) In mathematical language, is a set partition of the
N pixels, so it is technically a set of sets: each set
corresponds to a different object, and it contains the
pixel locations at which that object is unobscured by any
other objects. For example, one might find in a given
image that pixels x1, x2, and x6 fall into one object, x4 and
x5 fall into a different object, and x3 is alone in a third
object (Figure 1C). Then, the corresponding object
membership function can be expressed as = {{x1,x2,
x6},{x3},{x4,x5}}, or abbreviated as = {126j3j45}.
The object membership function does not contain

information directly about the intensities but only about
which pixels are correlated. Given a particular object
membership for some selected pixels, the probability
distribution P(Ij ) of image intensities I factorizes into
a product over objects: The different object textures
are independent, and hence so are their respective pixels.
In the above example, the probability distribution of
intensities at those six pixels would beP(Ij ) = P(I1, I2, I6j )
P(I3j )P(I4, P5j ). In general,

; ð1Þ

where j j is the number of objects, n is the set of pixels
falling into the nth object of , and I

n
is a vector of

intensities at those pixels. The factors P(I
n
j ) reflect the

joint probabilities of intensities in a single, textured
object. This formulation requires that we specify a texture
model to provide these probabilities. The texture model
may be a simple distribution over object brightness (as in
Figure 1A) or may include extra hidden variables for
each object, such as texture variance and orientation (as in
Figure 1B). Note that the texture model is wholly
unrelated to the geometrical aspects of the dead leaves
model.

If the geometric configuration of objects is not known,
then the joint distribution of intensities P(I) is an average
over all possible configurations. The factorized condi-
tional distributions of Equation 1 are then combined in the
weighted sum

: ð2Þ

This is a mixture distribution in which each mixture
component P(Ij ) has a distinct correlation structure
among pixels, induced by the different object membership
functions. The weighting coefficients are object member-
ship probabilities P( ), i.e., the probability of observing
the corresponding memberships over all possible dead
leaves images with a given shape ensemble. Figure 2
shows examples of simple mixture distributions.
The object membership probability P( ) represents how

frequently the N selected pixels are grouped into different
objects according to . We calculate each probability
recursively, generalizing an argument of Ruderman
(1997). To do so, we must introduce some additional
notation. We designate \n as the object membership
function that remains after removing the nth object. We
also define a Boolean vector A( ,n) with N components
Ai( ,n) = (xiZ n) that each indicate whether the pixel xi
is contained in the nth object of . For instance,
A({126j3j45},3) = (0,0,0,1,1,0).
By construction, there is a sequence of objects in any

dead leaves image, ordered by depth. Consider only the
topmost object. There is some probability, which we will
denote by QA( ,n), that this top object includes all of the
pixels in the set n, while excluding all the other pixels in

\n. Such an arrangement partially satisfies the member-
ship constraint imposed by . However, for this object
configuration to contribute to P( ), we still need to ensure
that the excluded pixels are also grouped appropriately by
objects “deeper” in the image. The probability that deeper
objects satisfy these reduced membership constraints is
P( \n). Note that this probability is unaffected by whether
the deeper objects would have enclosed the pixels in n:
Objects at those positions are already occluded by the top
object. There is also a probability QA( ,0) that the top
object contains none of the N selected pixels. Given this
event, the probability of finding objects deeper in the stack
that satisfy the membership constraints is just the original
factor P( ). Summing together all possibilities for the top
object, we find P( ) = QA( ,0)P( ) + ~n=1

j j QA( ,n)P( \n).
Solving for P( ) gives the recursion relation

: ð3Þ

Crucially, the image that remains below the top object is
yet another dead leaves image, with all the same statistical
properties as before, so we can calculate P( \ n) by the same
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formula, recursively. Eventually, the recursion terminates
when there are no pixels left in , with P(;) = 1.
This recursive equation applies universally to any dead

leaves model with independent, occluding objects, regard-
less of shape. In contrast, the factors QA( ,n) depend on the
particular shape ensemble and the chosen set of pixels. In
the Methods section, we derive the general form of these
factors for arbitrary shapes with smooth boundaries. The
Supplementary material provides mathematical details
of the calculation for the scale-invariant ensemble of

elliptical shapes used from here onward, as well as the
software implementing the calculation.
The number of possible object membership functions

quickly grows large as we consider more pixels. The
limiting step is the number of possible object membership
functions, known as Bell’s number BN, which unfortu-
nately grows slightly faster than exponentially. In prac-
tice, this restricts exact calculation to around a dozen
pixels. Despite this limitation, interesting insights can be
gained both by using few pixels or few subsets of possible

Figure 2. Joint probabilities of pixel intensities, based on an ensemble of elliptical objects and Gaussian-distributed object intensities with
an additive Gaussian white noise texture (Methods section). Contour plots are shown for (A) two pixels and (B) three pixels arranged in an
equilateral triangle. These joint distributions are weighted averages of independent and correlated distributions. The weighting factors are
the various object membership probabilities P( ), which are plotted below the joint intensity distributions as a function of the distance
between pixels.
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object memberships and by analyzing the general behavior
in various limits. For instance, in low-clutter conditions
when the maximal distance between pixels u is much
smaller than the minimum object size rj (e.g., Figure 1A),
object membership probabilities P( ) behave as P( ) È
(u/rj)

j jj1 (Figure 2). Consequently, edges are rare
(j edgej = 2), T-junctions are rarer (j T-juncj = 3), and every
other feature is rarer still (j j 9 3). In the sections below,
we use the solution of the dead leaves model and relevant
approximations to explain complex statistical properties of
natural scenes.

Feature distributions

In this section, we calculate the joint feature proba-
bilities in specific cases where features are linear functions
of the pixel intensities, f = FI for some filter matrix F. We
set the filters of F to be wavelets, local derivative
operators (edge detectors) with a given orientation and
scale. Choosing Haar wavelets, which weight intensities
by T1, emphasizes non-Gaussianity of natural feature
distributions and thereby establishes a more stringent test
for the image model (Lee et al., 2001).
It has been previously reported that empirical histo-

grams of different Haar wavelets and wavelet pairs in the
dead leaves model qualitatively reproduce the marginal
and joint distributions in log-transformed natural scenes
(Lee et al., 2001). Where empirical sampling can, at best,
expose these interesting statistical similarities, our ana-
lytical results let us understand their origins.
We choose an especially simple texture model, namely

a uniform, Gaussian-distributed intensity for each object.
We also superpose a small Gaussian white noise to
broaden the delta-function correlations present in truly

uniform objects. By giving all objects simple Gaussian
textures, we ensure that all non-Gaussian statistics in the
model must be the result of occlusion.

Marginal distributions of wavelet coefficients

One well-described feature of log-transformed natural
images is that the distribution of spatial derivatives $ has
heavy tails (Figure 3A) well approximated as a general-
ized Laplace distribution P($) ò ejj$j" for an exponent "
near 1 (Lee et al., 2001; Mallat, 1989; Ruderman &
Bialek, 1994; Wainwright & Simoncelli, 2000). The
heavy tails in these distributions cannot be obtained from
a standard correlated Gaussian model, because any
projection of a multidimensional Gaussian is again
Gaussian. Higher order statistical structure is required.
This distribution can be calculated exactly for the dead

leaves model by representing the local derivative by a
simple feature: the intensity difference between nearby
points, f = I1 j I2. The resultant feature distribution is a
mixture of two components, a narrow central peak and a
broader tail (Figures 3B and 3E). While this is a more
kurtotic distribution than the Gaussian texture, it does not
closely match natural derivative histograms (Figure 3A).
A simple consideration can account for the discrepancy.

In our solution of the dead leaves model, what we have
described so far as pixels are actually samples at
infinitesimal points. In contrast, pixels in natural images
represent light accumulated over some finite sensor area
set by film grain, camera sensor wells, or photoreceptor
cross-sections. This means that measured pixel values do
not directly reflect an intensity sampled from an object but
instead reflect integrals over unresolved subpixel details.
When many samples are summed over some region Xi,

Figure 3. Log-probability feature distributions log P( f ) of spatial derivatives f. (A) Empirically sampled distribution of derivatives (depicted
graphically, inset) in natural images. (B, C) Feature probabilities calculated exactly for dead leaves images, using just one and two
samples per image patch, respectively (inset). (D) Empirically sampled distributions for dead leaves images using a 16 � 16 grid of
samples per patch (inset). (E, F) Mixture components P(fª ) corresponding to (B) and (C), respectively.
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one might naively expect the total �Ii = ~j:x jZXi
Ij to be

Gaussianly distributed. However, the usual central limit
theorem does not apply, because of the correlations
between the variables that are induced by spatially
extended objects. These correlations can be segregated
by re-expressing the total intensity in an image patch as a
sum of the mean intensities in visible objects, weighted by
their visible areas, �Ii = ~n=1

j j j njJn, where j nj is the
number of pixels sampling from the nth object, i.e., its
visible area, and Jn is the average intensity in that area.
The summands j njJn are approximately independent
because they correspond to different objects. (They are
not strictly independent because the visible areas j nj are
constrained to add up to the total area of the patch.) This
way of writing �Ii reveals two reasons why the sum does
not converge to a normal distribution: the number of
summands is a random variable, and the summands
themselves have long-tailed distributions.
Scale invariance demands that the areas of homoge-

neous regions be distributed as a power law with exponent
2 (Alvarez, Gousseau, & Morel, 1999). In the dead leaves
model, the homogeneous regions are the visible parts of
each object. If the mean intensity within an object, Jn, is
distributed more narrowly than this, then the distribution
of visible areas j nj will dominate the tail behavior of the
products j njJn. �Ii is thus a sum over a random number
(one per visible object) of power-law-distributed terms. A
generalized central limit theorem holds that the distribu-
tion of such random sums is a two-sided exponential
distribution when summands are power-law distributed
with exponents of 2 or higher (Kotz, Kozubowski, &
Podgórski, 2001; Figure 3D).1 Indeed, Figure 3D shows
nearly straight tails on the log-probability plot. In natural
images, areas of homogeneous regions are again distrib-
uted as power laws, but depending on the particular
image, the exponents can be slightly below 2 (Alvarez
et al., 1999). Another generalized central limit theorem
shows that under such conditions the distribution of the
sum has slightly heavier tails (Gnedenko, 1972), as
observed (Figure 3A). While these considerations apply
directly to the average pixel intensities, they pertain
equally to intensity differences.
We can visualize how the heavy tails emerge by

plotting feature distributions conditioned on various object
configurations. When many different objects are visible,
the independent object intensities tend to average out
giving a narrow distribution; when few objects are visible,
their areas are large, so the few object intensities are
heavily weighted and their distribution is proportionately
broad (Figure 3F). Components with this spectrum of
distribution widths all combine to give the mixture
distribution heavy tails (Figures 3B–3D).

Joint distributions of wavelet coefficients

Within natural images, the feature distribution for two
orthogonal, colocalized wavelets has diamond-shaped

contours (Figure 4A). Densely sampled dead leaves
images reveal the same diamond contours (Figure 4B).
For both natural images and dead leaves images, the
distinctive non-Gaussian structure is most visible for
contours at large feature amplitude. In this limit, the
mixture components with greatest likelihood dominate the
distribution, and the most likely component at high
amplitudes is the one with the greatest variance in the
given feature direction. The greatest variance for a single
Haar wavelet occurs when a boundary between two objects
aligns with the boundary between oppositely signed lobes,
because that minimizes cancellation and maximizes the
overlap each object makes with each lobe. However, this
arrangement gives a minimal variance for the orthogonal
wavelet at the same location. As the object boundary
rotates (Figure 4C), the overlap with one wavelet reduces
by exactly the amount that the overlap increases for the
orthogonal wavelet. Since a mixture component’s width is
proportional to the overlap, this perfect trade-off gives the
maximum likelihood contours of the observed diamond
shape (Methods section, Figure 4D).2

For neighboring Haar wavelets with the same
orientation, there is once again a remarkable similarity
between pillow-shaped distributions measured for natu-
ral images and dead leaves images (Figures 4E and 4F).
These too can be explained using simple arguments about
the object geometry that dominates at high feature
amplitudes. Negatively correlated mixture components
occur when an object overlaps neighboring lobes on
neighboring filters (Figure 4G). Positively correlated
components occur when an object covers the same-signed
lobes of both Haar wavelets without cancellation by the
intervening lobe of opposite sign. This can only happen
if a small object occludes that oppositely signed lobe
(Figure 4H). Since a very limited variety of sizes and
positions can accommodate this configuration, the pos-
itively correlated mixture components have much lower
weights. Figure 4I shows mixture components with
negative correlations, from which emerge the basic pillow
shape of the full bivariate feature distributions (Methods
section).

Conditional distributions of wavelet coefficients

Wavelet coefficients in natural scenes may be nearly
decorrelated to second order yet still have a strong
statistical dependency taking the form of a “bowtie”-
shaped distribution of one filter coefficient conditioned
upon another (Figure 5A; Buccigrossi & Simoncelli,
1999). The dead leaves model reproduces this behavior
(Figure 5B) and allows us to interpret it as well.
The distribution of intensities found within an object is

narrower than the intensity distribution averaged over all
objects. Consequently, when a wavelet filter lies across an
object boundary, it typically yields a larger magnitude
than the same filter applied wholly within a single object.
Since object boundaries tend to extend across space, a
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second filter with different scale or orientation has an
elevated probability of encountering the same edge.
However, as Figures 5C–5D illustrate, the relative sign
and magnitude of the two feature amplitudes depends on
how the object boundary overlaps the second filter. In this
symmetric example, positive and negative feature ampli-
tudes are equally probable, so the conditional distribution
P( f2j f1) broadens with j f1j without any change in the
mean (Figure 5E). This explains why the variability in one
feature amplitude increases with the amplitude of a nearby
feature.

Shared causes of edges

A major advantage of using the dead leaves model is
that the causes of image featuresVobjects and their
attributesVare represented explicitly. Our results relate
these causes to each other as well as to the observable,
pixel-based image features.
In natural images, edge pairs tend to fall tangent to

circles passing through both edge locations (Chow, Jin, &
Treves, 2002; Sigman, Cecchi, Gilbert, & Magnasco,
2001). Geisler and Perry (2009) and Geisler et al. (2001)

Figure 4. Joint feature probabilities log P(f1, f2) for wavelet pairs f1 and f2. For orthogonal, colocalized Haar wavelets (inset of (A), shifted
for visibility), the contours of the empirically sampled bivariate distribution are diamond-shaped for both (A) natural images and (B) dead
leaves images. At high feature amplitudes, certain object configurations have the greatest likelihood and thus dominate the joint
distribution. Panel (C) illustrates one such configuration. Colors indicate different objects with unspecified intensities. Dark and light
shadings show how the two wavelets weight the image pixels. (D) Specifying only the object geometry (but not the object intensities) gives
conditional feature distributions P(f1, f2j ) that are bivariate Gaussians with elliptical contours. For the conditional distributions that
dominate at high feature amplitude, the contours trace a diamond-shaped envelope (thick curve) as a function of the relative angles
between the object boundary and wavelet orientations (Averaging over image patches section). Parallel, neighboring wavelets (inset of
(E)) are anticorrelated, with joint probability contours exhibiting a similar pillow shape in (E) natural images and (F) dead leaves images.
Panels (G) and (H) illustrate object configurations that dominate at large feature amplitudes, colored as in (C). (G) If one object covers the
opposite-sign lobes of neighboring wavelets while others prevent cancellation by the negative lobe, then the conditional feature
distribution will have a negative correlation. (H) Similarly, if one object covers the same-signed lobes of both features while another object
prevents cancellation, then the conditional distribution will have a positive correlation. Configurations like this are much less probable than
those like (G), because the middle object must have precisely the right size and position. (I) An ensemble of configurations like (G)
produce negatively correlated components (gray ellipses) that vary depending on how precisely the objects cover the feature lobes. The
positively correlated components (dashed ellipse) caused by configurations like (H) are many times less probable. Discounting the latter
gives the mixture distribution an overall negative correlation, leaving components that trace out the pillow-shaped envelope (thick curve)
seen in feature distribution contours (Methods section).
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augmented such an analysis with global information about
physical contours, by laboriously hand-segmenting objects
within many images of foliage. The likelihood that two
edges share a physical cause (Figure 6A)Vi.e., belong to
the same contourVwas highly predictive of human judg-
ments of whether the edges had a shared cause.
The dead leaves model can provide a mathematical

“ground truth” for such calculations. First, we select a
shape ensemble with a relatively large minimum object
size (Methods section) to match the low-clutter conditions
produced by the hand segmentation. Second, we represent
individual edge features by an object membership func-
tion that divides four pixels into two pairs (Figure 11A).
Note that this definition of edges uses the object
membership directly, instead of inferring object bounda-
ries from image pixels. Third, we define the conditions
under which a pair of edges has the same physical cause.
Fourth, for edge pairs with various geometrical relation-
ships (Figure 11B), we plot the likelihood ratio under the
hypotheses of a shared cause versus different causes
(Methods section).
A seemingly natural condition would identify a shared

cause when there exists an object that participates in both
edges. The resultant likelihood ratio always favors a shared
cause, for all relative positions and orientations of the edge
pair (Figure 6B), completely at odds with reported statistics
(Figure 6A; Geisler & Perry, 2009; Geisler et al., 2001).
The reason can be seen in Figure 6C: An object could be
shared across two edges simply if it is a common background
for two distinct objects. Thus, this definition, only involving
object identity on both sides of an edge, is inadequate to
reproduce the observed edge statistics.

A more sensible pattern emerges by modifying the
definition of common cause to include relative depth,
assigning “border ownership” (Zhou, Friedman, & von der
Heydt, 2000) to the local edge. We now define a common
cause to exist when a single object participates in both
edges and is closer to the viewer than the other objects
seen at these edges. An example of this configuration is
seen in Figure 6E, which agrees with our intuition of how
an object contour can be a shared cause for two edges.
Application of this definition requires more than the object
membership function, since reflects only the grouping of
pixels into objects and does not represent any information
about relative depth. We can, however, augment the
object membership function with this extra information,
defining an ordered object membership function . (This
Hebrew letter, final mem, appears only at the end of words
and is used here to indicate that object order matters.)
Whereas was a set of subsets, is an ordered set of
subsets, with n representing the pixels contained by the
nth highest object sampled by any of the N selected pixels.
For instance, Figure 1C depicts the ordered set = {{x3},
{x4,x5},{x1,x2,x6}}, which we abbreviate as {3 9 45 9
126}. The probabilities of these ordered object member-
ship functions can be calculated by a very similar
recursion equation as that used for the unordered variant
(Methods section). Figure 6D plots likelihood ratios using
a new definition of shared cause, which includes depth
(Table 1), in which a common cause occurs whenever a
single object is on top at both edges. The results show that
certain edges are more likely to have a common cause,
whereas other edges are more likely to be independent.
The pattern closely resembles results of Geisler and Perry

Figure 5. “Bowtie” shapes appear in empirically sampled conditional feature distributions P(f2jf1) for both (A) natural images and (B) dead
leaves images. Horizontal and vertical axes represent the coefficients of two neighboring, orthogonal Haar wavelet filters, f1 and f2 (inset
of (A)). The grayscale is normalized so black represents 0 and white is the maximum probability for a given f1. (C, D) Two equally probable
object configurations, colored as in Figure 4C, have identical f1 but opposite f2. Both features are proportional to the intensity difference
between foreground and background objects. (E) Conditional feature distribution with only four samples per feature (inset). Traces of the
limited sampling appear as the faint diagonal bands passing through the origin (highlighted with dotted lines on right half). Each distinct
band corresponds to a conditional distribution given a different object membership function, P(f2jf1, ). Symmetry ensures that there will be
no linear correlation between the two features, even as the width of P(f2jf1) increases with jf1j. With features sampled more densely, more
such diagonal bands appear, until the bands blend together (B). This produces the distinctive bowtie shape in the conditional feature
distributions.
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(2009) and Geisler et al. (2001; Figure 6A). Since those
statistics were predictive of human judgments about
contour completion across occluders, the dead leaves
model also qualitatively predicts human inference about
such ambiguous stimuli.

Relaxing the model assumptions

The preceding sections exploited a number of assump-
tions about the ensemble of sizes, shapes, and textures.
Here we address how relaxing those assumptions influen-
ces the results.

Size ensemble

The feature distributions calculated above all assumed
an inverse-cubic size ensemble, which was chosen to
produce the scale invariance that is a well-established
feature of natural scenes (Gousseau & Roueff, 2007; Lee
et al., 2001; Ruderman, 1997). As we show below,
occlusion alone is not enough to reproduce the natural
feature distributions, but occlusion with scale invariance is
sufficient.

The heavy-tailedmarginal wavelet distributions (Figure 3)
were generated as sums of a random number of indepen-
dent causes, namely the areas of various objects visible
within each pixel. One might expect that any size ensemble
will give sums with a random number of terms and thus
should produce similar tails. However, to obtain the nearly
exponential feature distribution seen in natural images, one
requires that the number of terms be broadly distributed,
and this is not true for arbitrary size ensembles. An inverse-
square size distribution favors large objects and rare edges.
The number of independent contributions to the sum is then
reliably smallVusually just zero or twoVso the marginal
distributions have a very high peak with occasional large
deviations (Figure 7A). An inverse-quartic size distribution
favors many small objects. The number of independent
components is then large but fairly consistent, and the sums
are much closer to Gaussian due to the usual central limit
theorem for a fixed number of summands (Figure 7C).
Between these extremes, the inverse-cubic size ensemble
gives the broadly distributed number of summands needed
for the generalized central limit theorem to apply, and it
consequently reproduces the nearly exponential tails seen
for natural images (Figure 7B).

Figure 6. Joint statistics of local edges and global contours. (A) The likelihood ratio that edge pairs in natural images are caused by a
common object versus by different objects (replotted from Geisler et al., 2001 with permission). For test edges at many distances,
directions, and orientations relative to a reference edge (horizontal bar at origin), line segments are colored to indicate the likelihood ratio
(Method section). The segments are sorted so those indicating high likelihoods appear in front. Concentric white rings correspond to
unsampled distances. In the dead leaves model, we can define the corresponding likelihood in one of two ways. First, a pair of edges
could have a “shared cause” if at least one side of each edge samples from the same object. The resultant likelihood is shown in (B) and
an example of a shared cause is shown in (C). Second, we may add a depth constraint to better describe the existence of a shared
contour: this shared object must also be on top of the other objects. Using this second definition, (D) shows the likelihoods and (E) gives a
sample configuration. These likelihood ratios are on average 60 times lower than in (B) and reveal a pattern very similar to the
observations made in natural images (A).
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The diamond- and pillow-shaped contours of the joint
distributions (Figure 4) at high amplitude were explained
by configurations involving only a few object boundaries.
These configurations must have non-negligible probability
for those arguments to hold, but beyond that minimal

requirement the reasoning does not depend on the precise
distribution of object sizes. Nonetheless, one might need
to look at very high feature amplitudes to see these pre-
dicted contour shapes: Dead leaves models with inverse-
square and inverse-quartic size distributions produce very

Figure 7. Comparison of feature distributions for the dead leaves model using different size distributions. The columns show sample
images, marginal distributions of Haar wavelets, joint distributions of orthogonal and parallel wavelets, conditional distributions of
wavelets, and contour likelihoods, each displayed as in Figures 3–6. (A–C) Objects are drawn from power-law size ensembles with
exponents j2 to j4.

(A) Classification of unordered

S: Shared cause D: Different causes

1256 ª 34 ª 78 12 ª 34 ª 56 ª 78
1278 ª 34 ª 56
12 ª 56 ª 3478
12 ª 78 ª 3456
1256 ª 3478
1278 ª 3456

(B) Classification of ordered

S: Shared cause D: Different causes

1256 9 34 ª 78 34 ª 78 9 1256 34 9 1256 9 78 78 9 1256 9 34
3478 9 12 ª 56 12 ª 56 9 3478 12 9 3478 9 56 56 9 3478 9 12
1278 9 34 ª 56 34 ª 56 9 1278 34 9 1278 9 56 56 9 1278 9 34
3456 9 12 ª 78 12 ª 78 9 3456 12 9 3456 9 78 78 9 3456 9 12
1256 ª 3478 12 ª 34 ª 56 ª 78
1278 ª 3456

Table 1. Object membership functions used for joint edge statistics. For compactness, we represent object membership functions by the pixel
indices divided symbolically into ordered or unordered groups. For example, {{x1,x2},{x3,x4}} is written as 12 ª 34 if unordered, and as 12 9 34 if
ordered such that the object containing points x1 and x2 lies above the object containing x3 and x4. These object membership functions are classified
according to whether they reflect a shared cause or different causes for the two edges, using (A) unordered or (B) ordered representations.
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different joint distribution contours for those feature
amplitudes with any appreciable probability (Figures 7A
and 7C). Contrast this with the inverse-cubic size distribu-
tion, for which the diamond and pillow contour shapes
appear already at lower amplitudes (Figure 7B). We
attribute this property to scale invariance, which requires
that filters of different spatial extents give identically
shaped feature distributions up to a scale factor. Correspond-
ingly, since the large filters can be decomposed into smaller
ones, a feature distribution at large amplitudes should also
resemble that same distribution at smaller amplitudes.
The bowtie-shaped conditional distributions (Figure 5)

were caused by object configurations that gave propor-
tional responses from both wavelet filters. The proportion-
ality constant depended on the geometry of the objects
and was smaller for more curved objects that tend to
overlap less with the second filter. Consequently, the
bowties are stronger for ensembles with more large
objects (Figure 7A) and weaker for ensembles with more
small objects (Figure 7C), with the most natural shapes
falling in the middle (Figures 5 and 7B).
In contrast with the wavelet feature distributions, the

contour likelihoods seen in Figure 6 have only a very
weak dependence on the size ensemble (Figures 7A–7C).
This is because we imposed a large minimum size to
match the low-clutter conditions used experimentally
(Geisler et al., 2001). For monotonically decreasing
distributions, the most probable size is this minimum.
Consequently, power-law size ensembles all possess
similar local edge and curvature statistics (August &
Zucker, 2000), which ultimately determine the contour
likelihood ratios. If we instead allow a small minimum
object size, then the ensembles exhibit much greater
differences: The inverse-cubic and -quartic distributions
yield edge pairs that are almost always from different
contours (data not shown). Only the inverse-square
distribution has sufficiently low clutter to reproduce the
experimental observations of Figure 6A.

Shape ensemble

Since the size ensemble has such important effects on
feature distributions, we should consider also the effects of
shape. Most real objects have more elaborate shapes than
the ellipses used in these calculations. Notably, the most
common edge configuration seen in natural scenes is
consistent with circular (Sigman et al., 2001), elliptical, or
parabolic (Geisler & Perry, 2009) arcs. This accounts for
why the elliptical object ensemble could reproduce
statistics of images populated by complex, natural objects.
Still, incorporating more complex objects may correct

some minor discrepancies between the dead leaves model
and natural scenes. In Figure 6, for instance, while all
edges to the side of a reference edge are unlikely to share
a cause, the least unlikely ones are parallel in the model
but perpendicular in natural images. This detail depends

on the particular shape ensemble. Elliptical objects have no
edge pairs arranged in a T, whereas more complex shapes
with inflection points might. Simulations with non-convex
shapes (dumbbells, rings, random Bezier curves) do show
such differences in details of their likelihood ratios (data not
shown). However, there is no change in the basic trend, which
favors common causes for edges with similar orientations
and headings but otherwise favors different causes.

Texture ensemble

How does the texture distribution affect the feature
statistics? A uniform Gaussian texture with superposed
low-amplitude, white noise was chosen to isolate the
effects of occlusion, but this texture is not very natural. On
the other hand, natural textures are dominated by the
lowest frequency components, and over the filter length
scales those components will manifest as an effective
mean luminance, which is already reflected in the model.
High-frequency components are weaker and, furthermore,
largely cancel out when integrated over a scale larger than
the wavelength. These components will then generally
appear as local noise added to the features. This noise just
blurs the feature distributions by an amount proportional
to the noise amplitude. As the texture length scale
increases, there is a concomitant increase in the non-
Gaussianity of the distributions (data not shown). Simu-
lations with the range of mottled, relatively large-scale
textures used in Figure 1B leave the non-Gaussian
properties unchanged (data not shown).
Natural textures have correlations across scales, often

due to the presence of edges. Under those conditions, the
effects of natural textures should be similar to the effects
of multiple object boundaries within the filters. Accord-
ingly, statistics of natural, purely textural images (Pickard,
Graszyk, Mann, Wachman, & Pickard, 1995) can have
joint distributions that resemble those obtained from the
dead leaves model. Feature distributions in textures with
abundant edges appear less Gaussian, and those for
smoother textures appear more Gaussian (data not shown).
Typical natural textures thus have little effect on the
measured statistics, beyond that already captured by the
dead leaves model.

Discussion

This study presented and then solved the dead leaves
model, a simplified model of natural images for which
occlusion is the central property. The solution consists of
exact probability distributions that relate arbitrary image
features to each other and to the depicted objects. By
applying and analyzing this solution, we were able to
account for several curious observations about natural
image statistics.

Journal of Vision (2010) 10(14):42, 1–20 Pitkow 11



The solution of the model was made possible by
connecting image features to object configurations
through the object membership function . This represen-
tation enables probability distributions to be decomposed
into a mixture of simpler distributions. The existence of a
mixture distribution for the dead leaves model was first
proved in Bordenave, Gousseau, and Roueff (2006) and
Gousseau and Roueff (2007). Here we found an explicit
solution for the mixture components that yield concrete
numbers used in various applications. Additionally, this
solution generalizes to give probabilistic relationships
among all model variables (Generalizations section),
including object texture, size, shape, position, and depth.
The ability to relate arbitrary image features and many
diverse object attributes in a principled manner is a
substantial advance over previous efforts.
We used these results to examine the distributions of

wavelet features in the model and natural images. For
these applications, we gave every object a Gaussian-
distributed uniform intensity with a small additive
Gaussian white noise. This ensured that all non-Gaussian
statistics were purely effects of occlusion. The resultant
dead leaves model could reproduce the distributions of
marginal, joint, and conditional wavelet coefficients
observed in natural images. The nearly exponential tails
of the marginal distributions were a consequence of
integrating over unresolved details (Figure 3). The
diamond-shaped joint distribution of orthogonal, colocal-
ized wavelets occurs because an edge aligned well with
one wavelet must be aligned poorly with an orthogonal
wavelet (Figure 4). The pillow-shaped joint distribution of
parallel wavelets reflects the rarity with which objects can
induce positive correlation by squeezing precisely into
one wavelet lobe (Figure 4). Bowtie-shaped conditional
distributions arise because extended object boundaries
can overlap wavelets with proportional amplitudes and
equal or opposite signs (Figure 5). Each of these
distributions was most natural when scale invariance was
imposed by an inverse-cubic size ensemble (Figure 7).
Finally, we found that accurately computing the likelihood
that two edges are part of the same contour depends criti-
cally on ascribing relative depth to the edges (Figure 6).
Table 2 summarizes the assumptions needed for these

calculations. Overall, the unifying idea is that simple geo-
metric configurations of occluding objects are sufficient to
explain seemingly complex statistics of edge features.

Beyond the dead leaves model

Although the dead leaves model is sufficient to cause
the observations presented above, it is not the sole process
that could do so. As one striking example, the cratered
lunar surface appears remarkably similar to dead leaves
images (Stuart-Alexander, 1978). Even though the causal
process is entirely different from occlusion, the essential
properties are identical: New impacts locally erase traces
of previous impacts, and small craters are much more
common than large ones. Similar principles may approx-
imate other physical processes as well, such as those that
determine surface composition or some three-dimensional
bump textures. The results presented here should pertain
to feature statistics caused by any such “exclusion”
process.
The results of the Relaxing the model assumptions

section suggest more general causes for the observed
statistical properties: sparse edges and scale invariance. In
the dead leaves model, occlusion by extended contours
automatically guarantees sparse edges, and the inverse-
cubic size distribution ensures scale invariance. Other
models may also have these properties, even without
occlusion. For instance, in a variant of the dead leaves
process one may combine an infinite stack of objects with
some transparency. With transparency of 50%, this variant
keeps some of the original non-Gaussianity (Figure 8B),
since there remains enough opacity to ensure that edges
are sharp and only a few objects determine the image
value at each point. As the opacity decreases, more
objects sum together and eventually wash out all distinct
edges (Figure 8C). In the limit of very low opacity, the
model becomes a linear sum of many objects and
converges to a Gaussian process. One can avoid this
unnatural Gaussian limit even in a linear model by
imposing sparseness by fiat, allowing only a small number
of objects rather than a large or infinite stack (Grenander
& Srivastava, 2001). With too few or too many objects,

Assumption Purpose

General
Occlusion Improve realism of model images
Object independence Solve general dead leaves model

Shape
Elliptical shapes Find exact membership probabilities P( )
Inverse-cubic size distribution Approximate scale invariance
Minimum size bigger/smaller than image feature Simulate low-/high-clutter images

Texture
Gaussian white noise texture Simplify conditional intensities P(Iª )
Low-contrast texture Emphasize consequences of occlusion

Table 2. Summary of assumptions used in calculations and their purposes.
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one sees distributions like those in Figure 7A or 8C,
respectively, but with just the right number of objects, one
can approximate the natural statistics (data not shown).
Although a linear model with sparseness constraints is

capable of matching edge statistics, it will be unable to
account for higher order features like T-junctions (Mumford
& Gidas, 2001), which are known to be highly informative
elements for visual perception (Hoffman, 1998). Occlusion
describes such features naturally, and it will be interesting
to apply the general solution of the dead leaves model to
study these higher order statistics.
Despite the dead leaves model’s success at reproducing

many complex natural statistics, we expect some statistical
differences also. Indeed, whereas natural scenes appear
reasonably Gaussian after normalizing intensities by the local
standard deviation (Ruderman & Bialek, 1994; Wainwright
& Simoncelli, 2000), dead leaves images do not have this
property. This therefore excludes object boundaries as the
cause, despite speculations to the contrary (van Hateren,
1997). By extending the model in various ways, one may
hope to capture this and other natural image properties and
thereby reveal their underlying causes.
One way to improve the realism of the dead leaves

model is by adding correlations between model variables.
For instance, light sources could be modeled by modulat-
ing texture according to position within each object and
adding intensity correlations between objects. Rudimen-
tary three-dimensional shape could be included using
textures to indicate object tilt (Saunders & Knill, 2001).
Perspective could be modeled by covarying size with
depth. The model has been expanded to true three-
dimensionality by giving objects a depth coordinate rather

than merely a sequential ordering, and some depth
statistics are then calculable (Langer, 2008). It may also
be possible to compute the probabilistic relationships
between model object depths and depth cues like
binocular disparity. Images with such improvements could
be easily simulated, but in some cases, a modified solution
for the enhanced model would be required.

Toward neural coding of natural scenes

Some perceptual tasks can be accurately modeled as
inference based on simple models of stimulus probabil-
ities (Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks,
2002; Howe & Purves, 2005; Kording, Ku, & Wolpert,
2004; Stocker & Simoncelli, 2006). Human perception of
images appears biased toward statistically probable fea-
tures of the dead leaves model. For example, empirical
edge statistics predict psychophysical judgments about
whether two edges have a common cause (Geisler et al.,
2001), and the dead leaves model reproduces these
statistics. Artificial neural networks trained on dead leaves
images make systematic interpretation errors that are
consistent with illusory percepts in humans (Corney &
Lotto, 2007). Such evidence hints that these percepts
might result from perceptual inference using probabilities
described by the dead leaves model.
On a more mechanistic level, some electrophysiological

recordings of individual neurons in animal cortex appear
consistent with a probabilistic weighing of sense data (Ma,
Beck, Latham, & Pouget, 2006; Mazurek, Roitman,
Ditterich, & Shadlen, 2003; Murray, Kersten, Olshausen,

Figure 8. Feature distributions for the dead leaves model with only partially opaque objects, shown as in Figure 7. (A–C) Objects have
opacities of 1.0, 0.5, and 0.1.
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Schrater, & Woods, 2002). We might speculate that some
cortical neurons could be tuned to encode feature
probabilities. For instance, complex cells in primary
visual cortex are excited by edges irrespective of polarity
and precise location of those edges (Hubel & Wiesel,
1962) and are especially sensitive to phase alignment
caused frequently by object boundaries in natural images
(Felsen, Touryan, Han, & Dan, 2005). We might therefore
wish to describe a rudimentary complex cell as encoding
the probability that an edge passes through two points in
its receptive field, irrespective of which side of the edge is
brighter. In our formalism, this corresponds to an object
membership function edge = {1j2}. Assuming that objects
have Gaussian distribution intensities and the image
sensors have some additive Gaussian noise, the proba-
bility of an edge given the intensity difference $ across
space is P( edgej$) = [1 + k exp(j"$2)]j1, where k and
" are positive constants that depend on the spatial scale,
overall image contrast, and sensor noise. This function
resembles the contrast energy model of complex cells
(Adelson & Bergen, 1985) with a saturating non-linearity.
Thus, we might interpret complex cell activity as encod-
ing the probability of a local edge in a world of objects. It
will be interesting to explore such a model more
thoroughly and to see if other neurons have properties
that map nicely onto representations of still more complex
features within the dead leaves model. Since synaptic
connections are modified by neural correlations, and the
occlusion model explains stimulus correlations, the model
may also help generate predictions about cortical circuitry
that has matured in the natural world.
In vision science, progress has been made by finding

stimuli appropriate for the area of study (Rust & Movshon,
2005). The best stimulus is one that contains a rich repertory
of the right kinds of features, while limiting extraneous
detail. Since the dead leaves model shares many low- and
mid-complexity features with the natural environment while
simplifying some higher level features, it seems like an
especially good stimulus to use in experiments that probe
the mechanisms of low- and mid-level vision. It strikes a
good balance between tractability, accuracy, and richness,
by isolating two causes of image features, which must be
disambiguated to interpret truly natural scenes: occlusion
and texture. The availability of an exact solution for the
relevant probabilities is a promising new ingredient for
experimental and theoretical studies of visual function.

Methods

Dead leaves membership probabilities

Equation 3 expresses the object membership probabil-
ities P( ) in terms of some geometric factors QA( ,n).
These factors represent the probability that points xi Z n

are included in one object while the other points xi Z \ n

are not, averaged over all object positions and shapes. For
convenience, we name these QA “inclusion probabilities.”
Note that these quantities involve the geometry of single
objects only; the recursion of Equation 3 converts them
into the multiobject probabilities P( ) that characterize the
dead leaves model geometry. In this section, we show how
the inclusion probabilities can be calculated for arbitrary
objects.
We begin by specifying a shape through a “leaf”

function LA(x, >), which is an indicator function over
space x and shape parameter(s) >. The function can
indicate either the inside or the outside of an object
centered on the origin, depending on the binary variable
A Z {0,1}: LA(x,>) equals A when pixel x is inside the
object and 1j A when x is outside it (Figure 9A). With
this definition,

; ð4Þ

is the inclusion probability that a leaf with shape > and
location c includes all sample points xi Z n and excludes
all remaining xi Z \n (Figure 9B).
The inclusion probabilities QA in Equation 3 are

averages over all possible object shapes and positions.
Thus, we are interested in the average of QA(c,>) over the
distribution of leaf positions P(c) and shapes P(>):

QA ¼
Z
d> Pð>ÞQA ð>Þ ¼

ZZ
d> dc Pð>ÞPðcÞQAðc;>Þ:

ð5Þ

We first perform the average over object positions c to
obtain QA(>), and subsequently calculate the average over
object shape >.
In the dead leaves model, objects are distributed with

uniform probability across space. For simplicity, we also
assume wraparound boundary conditions and with no loss
of generality require that no object is larger than the
image to avoid self-intersections. (We can allow larger
objects by choosing a small window into the dead leaves
world to represent our image; objects may be larger than
the window but smaller than the entire model world.)
By scaling distance so the image has unit area, we have
P(c) = 1 and the c-integral of binary-valued QA(c,>) gives
the inclusion probabilities for a given > as the areas of the
regions with constant QA(c,>).
Direct integration is not straightforward even for simple

object shapes because these regions generally have
complicated two-dimensional limits (Figure 9B) and may
even not be simply connected. However, using the
divergence theorem, we can transform this area integral
into a simpler contour integral that follows object
boundaries piecewise. The vector field V = 1

2
c has
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divergence (in c-space) of lIV = 1, so integrating this
divergence over the desired region gives the enclosed
area. The divergence theorem says that this integral equals
the flux of V across the region boundary:

QAð>Þ ¼
Z
dc PðcÞQAðc;>Þ ¼

Z
C

l IVdc ¼
I
¯C

V I n̂ds;

ð6Þ

where C is the region in c-space where QA(c,>) = 1,¯C is
its boundary, n̂ is the unit normal vector to the boundary,
and ds is the arc length. The boundary is composed of
piecewise smooth segments of the object outline centered
on the sample points xi (Figure 9B). We index the relevant
segments by m Z M and represent the curves by sm(t):
tmVG t G tmW for t between the cusps at which the contour
changes direction abruptly. The integral along each seg-
ment is then

Am ¼ 1

2

Z t 00m

t 0m

sm tð Þ I n̂m tð Þdt; ð7Þ

and the complete contour integral is a sum over segments
QA(>) = ~ mZMAm.

To average QA(>) over the shape ensemble P(>), we
need to compute

R
QA(>)P(>)d>. Note that the set of

piecewise smooth segments composing the contour ¯C
may change depending on > (Figure 9C), so the >-integral
must itself be done piecewise. We define an index ‘
specifying the regions R‘ in >-space where a given set of
segments M‘ composes the contour. Within R‘, the integral
over > can then be carried out on each summand Am

separately, yielding

QA ¼
X
‘

X
mZM‘

Z
R‘

d> Pð>ÞAmð>Þ: ð8Þ

Carrying out this calculation explicitly, not just for-
mally, requires some careful geometry. In the Supple-
mentary material, we complete these calculations for an
ensemble of elliptical objects with an inverse-cube power-
law distribution of sizes. In principle, it is also possible to
calculate all these probabilities exactly for various other
shape ensembles with simple boundaries such as poly-
gons, or compound objects comprising multiple circles.
Other size ensembles can also be used. The mathematical
techniques required to complete the calculations are
essentially the same.
For the figures presented in this paper, all objects were

ellipses with uniformly distributed eccentricities between
1 and 4, uniformly distributed orientations, and an inverse-
cube size distribution. Note that finite upper and lower

Figure 9. Diagrams illustrating inclusion probabilities QA( ,n). (A) A “leaf” function showing the shape of an object. L1(x,>) = 1 at points x
that are inside an object of shape parameter >, and L0(x,>) = 1 at points outside it. Here the shape parameter > specifies a smooth
irregular object. (B) Sample indicator functionsQA( ,n)(c,>) identify location c where an object could be placed to enclose all pixels xi Z n

and exclude the rest. Rotated copies of the object shape surround each point xi, designating the location c where that object will enclose
xi. An arrow points to the shaded region where an object could be placed to enclose both x1 and x3 but not x2, whose area is Q101(>). The
other shaded region indicates locations where an object would enclose only x2, whose area is Q010(>). Note that this diagram represents
possible location c of a single object, not three objects! (C) The indicator functions change shape in a complex manner as a function of the
shape parameter >, as illustrated for the outlined region shown at four different object sizes. This makes it challenging to integrate their
areas over the shape ensemble to obtain the inclusion probabilities QA( ,n).
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bounds on object sizes are required for a well-behaved
model that does not degenerate into either a uniform or
white noise image (Gousseau & Roueff, 2007; Lee et al.,
2001; Ruderman, 1997). Approximate scale invariance is
only valid within those bounds. Here we set the upper and
lower bounds to r+ = 100 and rj = 1. For Figures 3–5, we
used high-clutter conditions by setting the pixel spacing to
5rj. For Figure 6, to replicate the relatively low-clutter
conditions under which the natural image statistics were
measured empirically (Geisler et al., 2001), we chose the
pixel spacing to be rj/5.

Intensity and feature distributions

For simplicity, we assume that every object has a
Gaussian-distributed mean intensity and an additive
Gaussian white noise textural modulation with var-
iances I0 and I1. For this texture ensemble, the con-
ditional distribution of pixel intensities is P(Ij ) ò
exp(j1

2
IÕCj1I), with zero mean and covariance matrix

given by (C )ij = I0~n=1
j j Ai ( ,n)Aj ( ,n) + I1%ij. In the

results shown in this paper, I0 = 1 and I1 = 0.01.
For features specified as linear combinations of inten-

sities by f = FI, the conditional distribution is P(fj ) ò
exp
�
j1

2
fÕ
�
FC FÕ

�
j1f
�
and the joint probability is the

mixture distribution P(f) = ~ P( )P(fj ).

Averaging over image patches

Pixels in natural images are integrals of light intensity
over a finite solid angle. In the dead leaves model, we can

approximate these spatial integrals by summing over
multiple points within an image patch Xi, defining

�Ii ¼
X

j:xjZXi

Ij: ð9Þ

Using the white-noise texture model (Intensity and feature
distributions section), the total intensity �Ii over an image
patch has a conditional distribution P(�Iij ), which is
Gaussian with zero mean and variance

: ð10Þ

Here C is the covariance matrix of all pixels in image
patch Xi conditioned on the object membership function ,
and j nj is the number of sampled pixels falling into the
nth object. Thus, the variance increases with the square of
the sampled area of each object and is maximized when
only one object covers the sampling area.
A Haar wavelet takes the difference H = �I1 j �I2 between

sums �I1 and �I2 over two distinct regions (Figure 10A). The
corresponding variance does not necessarily increase with
the square of each object’s sampled area, because some of
the samples are weighted with opposite signs and thus
cancel. The conditional covariance between two Haar
wavelets Hi and Hj is

;

ð11Þ

Figure 10. Simplified representations of object configurations that dominate feature distributions at high amplitudes. Colors indicate
objects of unspecified intensity; shading indicates weighting by Haar wavelets. (A) A Haar wavelet Hi takes a difference of intensities �I1,i
and�I2,i, each totaled over a finite region. The pixels n

2,i contained both in elliptical object n and in region 2 of wavelet i are outlined. (B)
Colocalized, orthogonal Haar wavelets with circular support. (C, D) Parallel, nearby Haar wavelets, with objects that induce negative and
positive correlations, respectively. To simplify the calculations, objects differ only in their horizontal extent and extend completely to either
the left or right edge of each wavelet. The relevant variable is then the width of the overlap between the object and the wavelet filter,
denoted dl and dr. Compare these simplified configurations to those shown in Figures 4C, 4G, and 4H.
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where j n
k,ij is the number of samples in region k of

wavelet I, which fall into the nth object (Figure 10A), and
Nij is the number of samples shared by wavelets Hi and Hj.
In Figures 4B and 4D, the diamond-shaped contours

emerge as a consequence of Equation 11. Instead of the
Haar wavelets with square support shown in that figure, it
is simpler to understand the case with circular support
(Figure 10B), though the result is the same. The maximum
amplitude features occur when a single object boundary
passes through the center of the wavelet at an angle E. The
covariance of the mixture distribution conditioned on this
object configuration is

CHHkE ¼ 2N2I0

ð: j 2EÞ2 2Eð: j 2EÞ
2Eð: j 2EÞ ð2EÞ2

 !
þ NI11:

ð12Þ
For large N, this covariance matrix is nearly singular,
with almost unity correlation coefficient between the
variations along H1 and H2. Contours of the correspond-
ing bivariate Gaussian have maximum extent at feature
amplitudes proportional to (TE, T(:

2
j E)). The envelope of

these contours produces the diamond shown in Figures 4B
and 4D.
In Figure 4, two neighboring, parallel Haar wavelets

have a joint distribution with a distinctive “pillow” shape.
The dominant contributions at high feature amplitudes
involve three objects as depicted in Figure 4G, one
covering the left edge of the wavelet, a second one
covering the right edge, and a third covering the gap
between them. We can approximate this arrangement with
a one-dimensional version, considering only the horizon-
tal extent of objects (Figures 10C and 10D). If we denote
how much the leftmost and rightmost objects overlap the
wavelets by dl and dr, then the covariance of the mixture
distribution is

CHHkdl;dr ¼ N2I0

 
2$l

2

T$l$r

T$l$r

2$r
2

!
þ NI11; ð13Þ

where $i = min(di,1jdi) and the width of each lobe of the
Haar wavelet is 1. These components all have a correlation
coefficient of nearly T1/2 but have different variances.
By changing dl and dr for the configuration shown in
Figure 10C, we obtain conditional distributions with the
ensemble of contours seen in Figure 4I. Their envelope
produces the pillow shape (Figure 4).

Shared causes of edges

To define oriented edges, we select four pixels arranged
in a rectangle and select only those object membership
functions that bisect these four pixels into two pairs. Note
that a range of object boundaries can produce such a
separation. Giving the rectangle an aspect ratio of 2.75
constrains edges to an allowed range of orientations
2 tanj1(1/2.75) = 40- (Figure 11A) that matches the
orientation bandwidth used in Geisler et al. (2001). Pairs
of edges are described by two such bisected four-pixel
clusters (Figure 11B). This definition of edge pairs
restricts these eight pixels to have one of only seven
possible object membership functions (Table 1A). In one
of these configurations, every pixel pair is a member of a
different object: = {12j34j56j78}. In the remaining
configurations, at least two pairs are members of the same
object (Figure 6D). This latter category serves as one
possible definition of a “shared cause” for the two edges.
A second definition of shared cause invokes not just the

object membership but also the relative depth of the
objects. In particular, we use ordered membership
functions (Generalizations section), and we classify
these according to whether a pair of pixels from each
edge both falls into the same object and that object is above
the object present at the remaining pixels (Figure 6E). The
relevant are listed in Table 1B.
With either definition, the likelihood ratio of shared

cause to different cause is L = ~ ZS P( )/~ ZD P( ),
where S and D are the sets of membership functions
categorized as shared or different causes, respectively. This

Figure 11. Detailed geometry for Figure 6. (A) An edge exists when an object splits four pixels into two pairs. Pixels arranged in a
rectangle with an aspect ratio of $x/$y = 2.75 permit a range of edges with a 40- orientation bandwidth as used in Geisler et al. (2001). (B)
Pairs of edges thus defined are related by three parameters: distance d, orientation difference E, and relative direction 7.
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likelihood ratio varies as a function of the positions and
relative orientation of the two edge pairs (Figures 6C–6D).

Generalizations

We can calculate the relative depth of objects by using
an ordered object membership function rather than an
unordered membership function . The recursion in this
case is even simpler than Equation 3:

: ð14Þ

There is no summation here because there is only one
term for which the first object is highest in the stack of
objects. One may use a partial ordering if not all relative
depths are of interest, and then there will be a sum over
arrangements consistent with the partial ordering.
Note that there are more hidden variables of interest

besides the object membership and relative depth, and the
joint probabilities of these can be calculated by a similar
recursive formula, without marginalizing away the hidden
variables. The joint distribution of shape and membership,
for instance, can be calculated as

,

ð15Þ
where > is now a vector of N shape parameters, with >n
indicating the shape parameters for the topmost object
present at pixel location xn.

Empirical sampling of dead leaves
and natural images

For probabilities involving many image points, we
generate many dead leaves images and empirically sample
from them to obtain histograms. Images are produced by
layering objects from front to back until all image pixels are
members of some object, a process that yields stationary
image statistics (Kendall & Thonnes, 1999). For images
with transparency C, visibility decays exponentially with
depth. Objects are generated until each point is covered at
least ten times the extinction coefficient, 10/ log Cj1,
which ensures that omitting deeper objects will give only
a negligible error. The software generating dead leaves
images is available as Supplementary material.
Natural images were drawn from van Hateren’s image

database (van Hateren & van der Schaaf, 1998) or the
VisTex database (Pickard et al., 1995). Feature distribu-
tions were obtained by log-transforming images (Lee
et al., 2001), filtering them by the relevant Haar wavelets,
and computing univariate or bivariate histograms.
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Footnotes

1
Technically, this theorem requires a geometric distri-

bution for the number of summands. The observed
distribution of the number of visible objects is not
geometric, but it is similarly broad with a width of the
same order as its mean, so a similar result should hold.

2
The slight squashing of the diamond shape seen for

natural images is a consequence of gravity: in this natural
image database, there are more vertical contours than
horizontal ones. Here the dead leaves model does not show
this asymmetry because it is isotropic by construction.
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Exact feature probabilities in images with occlusion

Supporting information: Inclusion
probabilities for an ensemble
of ellipses

In the main text, we reported a universal recursion
equation expressing object membership probabilities P( )
in terms of some geometric factors QA( ,n), which depend
on the shape ensemble. There we showed how these
probabilities could be expressed geometrically, by first
averagingQA( ,n)(c, >) over position c via contour integrals,
and then averaging over the shape ensemble >. Here we
explain in detail how inclusion probabilities QA( ,n) can be
calculated exactly for an ensemble of circular objects. We
then use a simple transformation to generalize the result
for circles to an ensemble of ellipses. When the dust
settles, we will have averaged QA(c, >) over positionc and
shape > and for all binary vectors A.
For an ensemble of circles, the shape parameter > is just

a radius r, which we draw from a scale-invariant size
distribution P(r) ò rj3. Circular contours are easy to
express analytically. However, as described in the main
text, the integrals of QA(c, r) over both the contours and
size ensemble are more difficult because they must be done
piecewise. We do this in two steps. First, we evaluate the
general form of the indefinite integrals at the endpoints of
the piecewise intervals. Second, we describe an algorithm
that synthesizes these isolated contributions into the
complete piecewise integral, yielding the desired QA.

Parameterizing circular contours

Equation 4 related the positional average QA( ,n)(>) to
the total area of the region where QA( ,n) (c, >) = 1, and
thence to a contour integral. In this section, we evaluate
this contour integral for circles with fixed radius, so that
> = r. It is helpful to change from the generic notation
used in the Dead leaves membership probabilities section
to a notation that is specific to circular objects. As shown
in Figure S1A, the boundaries of regions with constant
QA( ,n)(c, r) are all circular arcs centered on some point xi,

siðtÞ ¼ rê t þ xi; ðS1Þ

with a unit vector defined as êt K (cos t, sin t). Each arc
terminates at angles t of the form

tijT ¼ Eij T 7ij ¼ tanj1ðx
i
j xjÞ T cosj1ðuij=2rÞ; ðS2Þ

where Eij is the angle of the line connecting the circle
centers, and T7ij are the angles that the intersection points
make with that line (Figure S1A). Eij is independent of r,
whereas 7ij depends on the ratio of r to the distance uij =
jxi j xjj between the circles as 7ij = cosj1(uij/2r).

Contour integration

Since the unit normal vectors are simply n̂(t) = êt and
the arc length is ds = j_s(t)jdt = r dt, we can now easily
perform the contour integral (Equation 7) over each arc
analytically:

Am ¼ 1

2

Z tmW

t 0m

sm tð Þ I n̂ tð Þds

¼ 1

2

Z tikT

tijT

r2 þ rxi I ê t

� �
dt ¼ aikT rð Þj aijT rð Þ; ðS3Þ

where we have defined

aijT rð Þ ¼ 1

2
r2tijT þ rxi I êtijTj:

2

� �

¼ r2Eij
2 T

r2

2
cosj1 uij

2r
þ uij

4
xi I ê EijTj:

2

T
r

2
xi I êEij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1j

u2ij
4r2

s
: ðS4Þ

For r smaller than the distances between pixels, the
circular arcs do not intersect and are thus complete circles
with total area of :r2, as expected.
Finally, we can obtain the total area QA( ,n)(r) by adding

up the relevant aijT(r) appropriately. We defer discussion
of this step to the Mapping piecewise integrals onto
appropriate Q� section.

Indefinite integral over radius

Next, we have to average these quantities over the
distribution ofr. To achieve scale invariance in generated
images, the distribution of object radii P(r) should be
proportional to rj3 (Lee et al., 2001). Some deviation
from this scaling behavior is required to prevent images
from degenerating with high probability into white noise
or uniform coloring (Gousseau & Roueff, 2007; Lee et al.,

1



2001; Ruderman, 1997). Here we choose to set upper and
lower size cutoffs r Z [rj, r+] to satisfy this constraint, so
that

P rð Þ ¼
1

z
rj3 rZ ½rj; rþ�

0 otherwise

;

(
ðS5Þ

with z = 1
2
(rj
j2 j r+

j2).
The r dependence of aijT(r) in Equation S4 takes the

forms r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1jðu=2rÞ2

q
, r2cosj1(u/2r), and r2. Each of these

terms must be averaged over P(r). The first average can be
solved analytically as

Z
P rð Þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1jðu=2rÞ2

q
dr ¼ 1

z

Z
rj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1jðu=2rÞ2

q
dr

¼ j
1

u

1

2
sin27þ :

2
j 7

� �
: ðS6Þ

The average of the second term can be found in tables
of integrals and involves a special function, the dilogar-
ithm Li2(z):Z

P rð Þr2 cosj1 u

2r
dr ¼ 1

z

Z
rj1 cosj1 u

2r
dr

¼ i

2
72 j7 log 1þ e2i7

� �
þ i

2
Li2 je2i7

� �
: ðS7Þ

For u G 2r (required for the two relevant circles to
intersect), the imaginary component is constant and
therefore cancels in any real definite integral. We can
therefore take just the real component without influencing
the result:Z

P rð Þr2 cosj1 u

2r
dr ¼ j7 log

u

2r
j
1

2
< iLi2 je2i7

� �� 	
:

ðS8Þ

Figure S1. (A) Diagram depicting the quantities needed to calculate inclusion probabilities QA( ,n)(r). The different regions of constant
QA( ,n)(c,r) for fixedr are bounded by circular arcs centered on the pixel x. Highlighted is one particular arc si(t) centered on point xi. This
arc is bounded by tijj and tikj, two angles at which other circles intersect. Centers xi and xj are separated by the distance uij and angle Eij.
The location at which the corresponding circles intersect deviates from the line connecting the centers by angle j8ij, so that tijj = Eij j 8ij.
(B) Illustration of how the contours around regions with constant QA( ,n)(c, r) change shape as r increases (from left to right). Two regions
in c-space first touch when r equals half the distance between two pixels xi and xj, a critical radius rij* we call a “kissing point” (center
panel). As r increases further, a new contour of reversed orientation is created, bounding a region within which an object of radius r can
enclose both pixels. (C) Similarly, a “triple intersection” always exists for a particular rijk* , the circumradius, at which any three non-collinear
pixels xi, xj, and xk are equidistant from a fourth point called the circumcenter (center panel). As r crosses this critical radius, the existing
contour connecting the three intersection points changes orientation, and the enclosed region is associated with a different QA( ,n). (D, E)
Illustrations of two strategies for integrating QA(r) over r: choose only one region at a time, and track its contour as r varies (D); or track all
contour endpoints over r and add their contributions to all appropriate regions (E). We use the latter strategy. Arrows in (F) depict the four
regions A receiving identical contributions (up to a sign) from the contours along s1(t) that terminate at the intersection point x13j.
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The imaginary part of the dilogarithm evaluated on the
complex unit circle is related to another special function
known as Clausen’s integral, for which optimized numer-
ical routines have been written (MacLeod, 1996):

< iLi2 je2i7
� �� 	 ¼ Cl2 j27j :ð Þ: ðS9Þ

The remaining terms in aijT(r) are elementary to integrate:
XP(r)r2dr = 1

z log r and XP(r)dr = j 1
2zr

j2.
Combining all these pieces with their correct coeffi-

cients, we obtain the indefinite integral for the size
average of aijT(r):

bijT rð ÞK
Z

drP rð ÞaijT rð Þ

¼ 1

2z
E logrj

u

8zr2
xi I êEj:

2 k
1

2zu
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2
sin27þ:

2
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I êEk
1
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7 log
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 �
k

1

4z
Cl2 j27j :ð Þ: ðS10Þ

Identifying piecewise smooth intervals
over radius

The definite integral over r must be performed piece-
wise because its integration contours may change at
certain critical radii r*. Generically, there are two types
of critical radii, depicted in Figures S1B and S1C:
“kissing points” where rij* is half the distance uij between
a pair of points xi and xj, so that their corresponding
circles just touch; and “triple intersections” where rijk* equals
the circumradius of three points xi, xj, and xk, so that the
three corresponding circles all meet. For three points
separated by distances uij, ujk, and uki, and semiperimeter
s = 1

2
(uij + ujk + uki), the circumradius is

rijk* ¼ uijujkuki=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsj uijÞðsj ujkÞðsj ukiÞ

q
: ðS11Þ

If the pixel locations have extra symmetries, e.g., lie on a
lattice, then several critical radii r* may coincide. In this
case, each r* can be treated sequentially without changing
the result, as if perturbing each r* infinitesimally: bijT(rW) j
bijT(rV) contributes zero in the limit rW j rVY 0 when there
are no intervening critical radii.

Mapping piecewise integrals
onto appropriate QA

Now we must calculate QA by adding up the definite
integral bijT(r) evaluated at the appropriate critical radii r*
and the relevant triples (i, j, T). Consider two strategies for

this. First, one could choose one particularA and track how
the cusps of QA(c, r)’s boundary appear, change, and
disappear as a function of r, and then add up the appropriate
contributions from Equation S10 (Figure S1D). One would
then repeat this procedure for every possibleA. Second, one
could choose a particular intersection point xijT between
two objects, track how it is associated with different
regions as a function of r, and add its contribution to the
various appropriate QA. By iterating through all intersec-
tion points, eventually all contributions to all QA are
computed (Figure S1E). This latter strategy is easier
because the behavior of the intersection points is simpler
to track than the various (possibly unconnected) regions
whereQA(c, r) = 1. This is the approach we describe below.
To compute the definite integral corresponding to

Equation S10 above, we must therefore associate each
integrand aijT(r) with Boolean vectors A designating the
correct targets QA for each interval of r. The region
geometry and thus these desired associations change only
at critical radii; between critical radii, the associations are
constant. By construction, aijT(r) (Equation S4) is the
result of a contour integral terminating at an intersection
between circles centered on xi and xj (Figure S1A). We
label this intersection point by xijT = xi + rêEijT7ij. Contour
integrals terminating at this point contribute to every one
of the four regions that touch xijT, i.e., the A involving all
four allowed combinations of its elements Ai Z {0, 1}
and Aj Z {0, 1} (Figure S1F). The point xijT is not on the
boundary of any circles centered on other pixels x‘, since
otherwise there would be a critical radius within the
selected r interval. xijT is thus either strictly inside or
strictly outside a circle of radius r for all ‘ m i, j. We can
now specify all elements of A as

A‘ ¼
L1ðxijTj x

‘
; rÞ ‘ m i; j

0 or 1 ‘ ¼ i; j
;

8<
: ðS12Þ

where L1(xijT j x‘, r) is the leaf function from the Dead
leaves membership probabilities section. This relation iden-
tifies the appropriate targets QA for bijT of Equation S10.
To identify the signs cijT with which bijT contribute to

the target QA, it helps to go back and compute the signs
that aijT(r) contribute to the target area QA(r). These signs
depend on the geometry of the region contours. Consider
how the region boundaries change their geometry as r
increases from rj to r+. A contour around an object
boundary is counterclockwise initially, i.e., before the
contour intersects any other object boundaries. As r
increases past a kissing point rij*, a pair of intersection
points xijT is created along with a new region with
clockwise orientation (Figure S1B). Note that the contours
around the object centered on xi initially converge at an
intersection xijj and diverge at xij+. In other words,
intersections xijj are initially endpoints of the contours
along si(t) that contribute +aijT to the contour integral

3



(Equation 7), and xij+ are initially starting points that
contribute jaijT. However, as r increases past each triple
intersection rijk* for k m i, j, another circle centered on xk
encloses the intersection point. The orientations of the
contours at xijT then reverse (Figure S1C), and the sign
that each aijT contributes also reverses. Thus, the overall
convergence for paths at an intersection point is: converg-
ing for j, diverging for +, and reversed by the number of
circles enclosing the point. Mathematically, we can write
the desired sign as

cijTðrÞ ¼ kðj1Þ~‘mi; jL1ðx‘jxijT;rÞ: ðS13Þ

Note that cijT(r) does not vary between critical radii r*, so
we may use its value anywhere within the integration
interval. Finally, when we integrate aijT(r) over rVG r G rW,
the value of the indefinite integral bijT at rVis subtracted
from the value at rW. Thus, for each interval between
critical radii, we add

$Q� rV; rWð Þ ¼ cijT
rVþ rW

2

� �
I bijT rWð ÞjbijT rVð Þ� �

;

ðS14Þ

to the appropriate QA.
There is one remaining subtlety in adding up the

contributions to QA. In the first term of bijT, there is an
ambiguity of 2: in what angle is subtended by a given arc,
which cannot be resolved by local properties of the arc
endpoints alone. We remedy this by computing $QA(rV,rW)
modulo :

z log rW/rV, which is the maximum possible con-
tribution an area can make between rV and rW. This
guarantees that we update QA with the unique definite
integral over rV G r G rW that lies between 0 and this
maximum.

Summary of the algorithm for calculating QA

This completes the mathematics necessary to calculate
QA. To summarize, we present the method in algorithmic
form.

1. Initialize all QA to zero.

2. Add
R ri

*

r drP(r):r2 = :
z log

ri
*

r to Q%i
for each circle,

where ri* = minjmi rij* is the first kissing point for that
circle and %i is a vector of zeros with a 1 at index i.
This is the area accumulated in Q%i

before any other
circles were touched.

3. Sort all critical radii rij* and rijk* within the integration
bounds rj and r+.

4. For each interval rVG r G rW bounded by sequential
critical radii:

(a) For each existing intersection point xijT:
i. Calculate the region indicators A to which the
point xijT contributes

ii. Add $QA(rV,rW) modulo :
z log

rW
rV to QA

5. Set Q0 = 1 j~�m0QA.

Once QA( ,n) is calculated for all object membership
functions , then QA( n,k) must be calculated for the
reduced \n used in the recursion. For efficiency, this can
be accomplished by marginalizing QA over the appropriate
indices Ai, rather than recalculating it with a smaller set
of pixels.
Note that with a different size ensemble P(r), the

expression for bijT would change, but the procedure for
combining them to obtain QA would be the same.

Converting from circles to ellipses

It is straightforward to transform our calculation of QA

for circles into a result for ellipses of equal area but
eccentricity & and orientation y. All distances are effec-
tively scaled by

ffiffiffi
&

p
in the direction of êy and 1/

ffiffiffi
&

p
in the

orthogonal direction. This is equivalent to transforming
the pixel locations xi Y xiVas

xVi ¼ 1ffiffiffi
&

p
&cos2yþ sin2y ð&j 1Þcosysiny

ð&j 1Þcosysiny cos2yþ &sin2y

0
@

1
A I xi;

ðS15Þ

and recomputing QA with xiV(&, y).
Unfortunately, we cannot analytically integrate bijT(r*)

as a function of eccentricity & or angle y, because
the dependence on the points xiV(&, y) already involves
special functions. Instead, to obtain the average over pos-
sible ellipses we use a discrete ensemble of eccentricities
and angles and sum over them as

bQAðc; r; &;yÞÀc;r;&;y ¼
X
&;y

QAð&;yÞPð&ÞPðyÞ: ðS16Þ

More generally, when the integral cannot be expressed
analytically using easily computable functions, one may
specify the ensemble P(>) by a discrete number of
allowed shapes and compute the ensemble average as a
sum rather than as an integral.
The result of these calculations are concrete numbers

for the inclusion probabilities QA, which can then be
substituted into Equations 1, 2, and 3 to calculate the
object membership probabilities and joint distributions of
pixel intensities and image features.
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Hebrew letter mem: An object membership function
j j Number of distinct objects in

n Set of pixels contained in nth object

\n Object membership function with nth object removed
P( ) Probability that pixels are divided according to

Final mem: an ordered object membership function

x Locations of all N selected pixels
xi Location of ith pixel
I Vector of all N pixel values
Ii Pixel value at point xi
I

n
Vector of all pixel values in nth object

A( , n) Boolean vector indicating pixels in nth object
QA( ,0) Probability that an isolated object includes no selected pixels
QA( ,n) Probability that an isolated object includes only pixels n

QA( ,n)(>) As above, but given the object shape >

QA( ,n)(c, >) As above, but also given the object position c

xijT Location of two intersections between objects centered on xi and xj
uij Distance between xi and xj
Eij Angle of the vector xj jxi
7ij Absolute value of angle between intersection points and line connecting xi and xj
tijT Angle of xijT j xi
êE Unit vector (cosE, sinE)

si(t) Contour around object centered on xi
aijT(r) Indefinite integral over t along contour si(t) evaluated at tijT with fixed r
bijT(r) Indefinite integral of aijT(r) over r
cijT(r) Sign indicating whether contour si(t) starts or ends at t =tijT
r* Critical radius at which regions of constant QA( ,n) (c, r) change structure
rij* Radius of kissing point for circles on xi and xj
rijk* Radius of triple intersection for circles on xi, xj, and xk

& Ellipse eccentricity
y Orientation of major axis of ellipse
xiV(&, y) Transformed pixel location

Table S1. Glossary of symbols used.
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