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Behavior varies from trial to trial even when the stimulus is maintained as constant as possible. In many
models, this variability is attributed to noise in the brain. Here, we propose that there is another major source
of variability: suboptimal inference. Importantly, we argue that in most tasks of interest, and particularly
complex ones, suboptimal inference is likely to be the dominant component of behavioral variability. This
perspective explains a variety of intriguing observations, including why variability appears to be larger on
the sensory than on the motor side, and why our sensors are sometimes surprisingly unreliable.
Introduction
Even the simplest of behaviors exhibits unwanted variability. For

instance, when monkeys are asked to visually track a black dot

moving against a white background, the trajectory of their gaze

exhibits a great deal of variability, even when the path of the

dot is the same across trials (Osborne et al., 2005). Two sources

of noise are commonly blamed for variability in behavior. One is

internal noise; that is, noise within the nervous system (Faisal

et al., 2008). This includes noise in sensors, noise in individual

neurons, fluctuations in internal variables like attentional and

motivational levels, and noise in motoneurons or muscle fibers.

The other source of behavioral variability is external noise—noise

associated with variability in the outside world. Suppose, for

instance, that instead of tracking a single dot, subjects tracked

a flock of birds. Here there is a true underlying direction—deter-

mined, for example, by the goal of the birds. However, because

each bird deviates slightly from the true direction, there would be

trial-to-trial variability in the best estimate of direction. Similar

variability arises when, say, estimating the position of an object

in low light: because of the small number of photons, again the

best estimate of position would vary from trial to trial.

Although internal and external noise are the focus of most

studies of behavioral variability, we argue here that there is a third

cause: deterministic approximations in the complex computa-

tions performed by the nervous system. This cause has been

largely ignored in neuroscience. However, we argue here that

this is likely to be a large, if not dominant, cause of behavioral

variability, particularly in complex problems like object recogni-

tion. We also discuss why deterministic approximations in

complex computations have a strong influence on neural vari-

ability although not so much on single cell variability. Instead,

we argue that the impact of suboptimal inference will mostly

be on the correlations among neurons and, possibly, the tuning

curves. These ideas have important implications for current

neural models of behavior, which tend to focus on single-cell

variability and internal noise as the main contributors to behav-

ioral variability.
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Although these arguments apply to any form of computation,

we focus here on probabilistic inference. In this case, determin-

istic approximations correspond to suboptimal inference.

Internal Noise and Behavioral Variability: The Standard
Approach
For most models in the literature, the sole cause of behavioral

variability is internal noise. Many of these models focus on

discrimination tasks and their architectures are variations of

the simple network depicted in Figure 1. The input layer contains

a population of neurons encoding a sensory variable with a pop-

ulation code; for instance MT neurons encoding direction of

motion (Law and Gold, 2008; Shadlen et al., 1996). These

neurons are assumed to be noisy, often with a variability

following either a Poisson distribution or a Gaussian distribution

with a variance proportional to the mean activity. Typically, the

population then projects onto a single output unit whose

value determines the response of the model/behavior of the

animal. In mathematical psychology, the input neurons are often

replaced by abstract ‘‘channels.’’ These channels are then cor-

rupted by additive or multiplicative noise (Dosher and Lu, 1998;

Petrov et al., 2004; Regan and Beverley, 1985).

Despite these differences, the neural and psychological

models are conceptually nearly identical. In particular, in both

types of models behavioral performance depends critically on

the level of neuronal variability, since eliminating that variability

leads to perfect performance. Many models, including several

by the authors of the present paper, explicitly assume that this

neuronal variability is internally generated, thus blaming internal

variability as the primary cause of behavioral variability (Deneve

et al., 2001; Fitzpatrick et al., 1997; Kasamatsu et al., 2001;

Pouget and Thorpe, 1991; Rolls and Deco, 2010; Shadlen et al.,

1996; Stocker and Simoncelli, 2006; Wang, 2002). Other studies

are less explicit about the origin of the variability but, particularly

in the attentional (Reynolds and Heeger, 2009; Reynolds et al.,

2000) and perceptual learning domains (Schoups et al., 2001;

Teich and Qian, 2003), the variability is assumed to be
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Figure 1. Typical Neural Model of Sensory Discrimination
The input neurons encode the sensory stimulus and project to a single decision
unit. Internal noise is injected in the response of the input units, often in the
form of independent Poisson variability.
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Figure 2. Variability Induced by Suboptimal Inference
The plot shows the fluctuations in estimated approval ratings using two
different methods. In popt (red), the estimate from the two different companies
are combined optimally, while in pav (blue), they are combined suboptimally.
Note that the variability in pav is greater than the variability in popt. This addi-
tional variability in pav is not due to noise; it is due to suboptimal inference
caused by a deterministic approximation of the assumed statistical structure
of the data.
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independent of the variability of the sensory input and, as such, it

functions as internal variability. For instance, it is common to

assume that attention boosts the gain of tuning curves, or

performs a divisive normalization of the sensory inputs. Impor-

tantly, in such models, the variability is unaffected by attention:

it is assumed to follow an independent Poisson distribution (or

variation thereof) both before and after attention is engaged,

as if this variability came after the sensory input has been

enhanced by attentive mechanisms (Reynolds and Heeger,

2009;Reynolds et al., 2000). A similar reasoning is used inmodels

of sensory coding with population codes. Thus, several papers

have argued that sharpening or amplifying tuning curves can

improve neural coding. These claims are almost always based

on the assumption that the distribution of the variability remains

the same before and after the tuning curves have been modified

(Fitzpatrick et al., 1997; Teich and Qian, 2003; Zhang and

Sejnowski, 1999). This is a perfectly valid assumption if one thinks

of the variability as being internally generated and added on top

of the tuning curves. A commonexplanation ofWeber’s law relies

on a variation of this idea (Dehaene, 2006; Nover et al., 2005).

Given that internal variability is indeed perceived as a primary

cause of behavioral variability, neuroscientists have started to

investigate its origin. Several causes have been identified; two

of the major ones are fluctuations in internal variables (e.g., moti-

vational and attentional levels) (Nienborg and Cumming, 2009)

and stochastic synaptic release (Stevens, 2003). Another poten-

tial cause is thechaotic dynamicsof networkswithbalancedexci-

tationand inhibition (Banerjeeet al., 2008; Londonet al., 2010; van

Vreeswijk and Sompolinsky, 1996). Chaotic dynamics lead to

spike trains with near Poisson statistics—close to what has

been reported in vivo, and close to what is used in many models.

Although it is clear that there are multiple causes of internal

variability in neural circuits, the critical question is whether this

internal variability has a large impact on behavioral variability,

as assumed in many models. We argue below that, in complex

tasks, internal variability is only a minor contributor to behavioral

variability compared to the variability due to suboptimal infer-

ence. To illustrate what we mean by suboptimal inference and

how it contributes to behavioral variability, we turn to a simple

example inspired by politics.

How Suboptimal Inference Can Increase Behavioral
Variability
Suppose you are a politician and you would like to know your

approval rating. You hire two polling companies, A and B. Every
week, they give you two numbers, dA and dB, the percentage of

people who approve of you. How should you combine these two

numbers? If you knew how many people were polled by each

company, it would be clear what the optimal combination is.

For instance, if company A samples 900 people every week,

while company B samples only 100 people, the optimal combi-

nation is bdopt = 0:9dA + 0:1dB. If you assume that the two compa-

nies use the same number of samples, the best combination is

the average, bdav = 0:5dA + 0:5dB.

In Figure 2, we simulated what dA and dB would look like week

after week, assuming 900 samples for company A and 100 for

company B and assuming that the true approval ratings are

constant every week at 60%. As one would expect, the estimate

obtained from the optimal combination, bdopt, shows some vari-

ability around 60%, due to the limited sample size. The estimate

obtained from the simple average, however, shows much more

variability, even though it is based on the same numbers as
bdopt, namely, dA and dB. This is not particularly surprising: unbi-

ased estimates obtained from a suboptimal strategy must show

more variability than those obtained from the optimal strategy.

Importantly, though, the extra variability in bdav compared to
bdopt is not due to the addition of noise. Instead, it is due to subop-

timal inference—the deterministic, but suboptimal, computation
bdav = 0:5dA + 0:5dB, which was based on an incorrect assump-

tion about the number of samples used by each company.

Although this simple example might seem far removed from

the brain, it is in fact similar to the problem of multisensory inte-

gration: for example, dA and dB could correspond to an auditory

and a visual cue about the position of an object in space, and bdav

to the observer’s estimate of the position of the object.

The effect of suboptimal inference can evenbe seen in a simple

discrimination task. For instance, consider the problem of

discriminating between two Gabor patches oriented at either

+5� or –5�, and containing a small amount of additive noise, as

shown in Figure 3A, first column. Here, the additive noise is
Neuron 74, April 12, 2012 ª2012 Elsevier Inc. 31
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Figure 3. Amplification of Noise by Suboptimal Inference
(A) The image consists of a Gabor patch oriented at either +5� or �5�, plus
small additive noise on each pixel. Both units compute the dot product of the
image with a linear filter (their feedforward weights) to yield a decision of which
stimulus is present. The top unit uses the filter that discriminates optimally
between these two particular oriented stimuli. In contrast, the bottom unit
uses a filter that is optimized for a Gabor patch with twice the frequency of the
patch in the image. The plot on the right shows the activity of the two units
for 100 presentations of the Gabor patches, all oriented at +5� but with
different pixel noise. The filters have been normalized to ensure that the
mean response is 1 in both cases. The standard deviation of the bottom unit
(blue) is 54 times larger than the standard deviation of the top unit (red;
although the trace looks flat, it does in fact fluctuate). In other words, more
than 98% of the variability of the bottom unit is due to the use of a suboptimal
filter.
(B) Percentage of Fisher information loss as a function of the wavelength of
the filter. The information loss increases steeply as soon as the wavelength of
the filter differs from the wavelength in the image (set to 50).

Neuron

Perspective
meant to model internal noise, such as noise in the photorecep-

tors. Figure 3A shows two linear discriminators, whose

responses are proportional to the dot product of each image

with the linear filter (Figure 3A, second column) associated with

each discriminator. The linear filter for the top unit in the third

column of this figure was optimized to maximize its ability to

discriminate between the two orientations of the Gabor patches.

The linear filter of the other unit (bottom one in the third column of

Figure 3A) was optimized for Gabor patches with the same

Gaussian envelope but half the wavelength. The unit at the

bottom thus performs suboptimal inference; it assumes the

wrong statistical structure of the task, just like the politician

did with bdav in the polling example.

The graph in the right panel of Figure 3A shows the responses

of the two units to a sequence of images with the same orienta-

tion but different noise. The responses have been normalized to

ensure that the estimates are unbiased for both units. Given this

normalization, greater response variability implies greater stim-

ulus uncertainty and, therefore, greater behavioral variability.

This simulation reveals two important facts. First, suboptimal

inference has an amplifying effect on the internal noise. Indeed,

if we set the noise to zero, the variability in both units would be

zero. Second, most of the behavioral variability can be due to

suboptimal inference. This can be seen by comparing the vari-

ability of the two units. For the top unit, all the variability is due

to internal noise. In the bottom unit, all the extra variability is

due to suboptimal inference, which in this case is 54 times the

variability from the noise alone; more than 98% of the total vari-

ability.

The fraction of variability due to suboptimal inference

depends, of course, on the severity of the approximation, i.e.,

on the discrepancy between the optimal frequency and the

one assumed by the suboptimal filter. As shown in Figure 3B,
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the information loss grows quickly as the difference between

the filter and image wavelengths grows.

The point of this example is to show that in psychophysics

experiments, much of the behavioral variability might be due to

suboptimal inference and not noise. This is true even in experi-

ments in which external noise is minimized, as when the very

same image is presented repeatedly across trials: suboptimal

inference will amplify any internal noise (Figure 3A). In fact, we

will also see that suboptimal inference can increase variability

even in the absence of internal noise.

External Noise and Generative Models
In the polling and discrimination examples, we saw that subop-

timal inference can amplify existing noise. In most real-world

situations that the brain has to deal with, there are two distinct

sources of such noise: internal and external. We have already

discussed several potential sources of internal noise. With re-

gard to external noise, it is important to point out that we do

not just mean random noise injected into a stimulus, but the

much more general notion of the stochastic process by which

variables of interest (e.g., the direction of motion of a visual

object, the identity of an object, the location of a sound source,

etc) give rise to the sensory input (e.g., the images and sounds

produced by an object). Here, we adopt machine learning termi-

nology and refer to the state-of-the-world variables as latent

variables and to the stochastic process that maps latent vari-

ables into sensory inputs as the generative model. For the

purpose of a given task, all external variables other than the

latent variables of behavioral interest are often called nuisance

variables, and count as external noise.

Is Suboptimal Inference or Internal Noise More Critical
for Behavioral Variability?
In situations in which there is both internal and external noise

(i.e., a generative model), there are now three potential causes

of behavioral variability: the internal noise, the external noise

and suboptimal inference. Which of these causes is more critical

to behavioral variability? To address this question, we consider

a neural version of the polling example (Figure 2) with internal

and external noise. The problem we consider is cue integration:

two sensory modalities (which we take, for concreteness, to be

audition and vision) provide noisy information about the position

of an object, and that information must be combined such that

the overall uncertainty in position is reduced. A network for this

problem, which is shown in Figure 4A, contains two input

populations that encode the position of an object using proba-

bilistic population codes (Ma et al., 2006). These input popula-

tions converge onto a single output population which encodes

the location of the object. Output neurons are so-called LNP

(Gerstner and Kistler, 2002) neurons, whose internal state at

every time step is obtained by computing a nonlinear function

of a weighted sum of their inputs. This internal state is then

used to determine the probability of emitting a spike on that

time step. This stochastic spike generation mechanism acts as

an internal source of noise, which leads to near-Poisson spike

trains similar to the ones used in many neural models (Gerstner

and Kistler, 2002). We take the ‘‘behavioral response’’ of the

network to be the maximum likelihood estimate of position given
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Figure 4. Suboptimal Inference Dominates over
Internal Noise in Large Networks
(A) Network architecture. Two inputs layers encode the
position of an object based on visual and auditory infor-
mation, using population codes. Typical patterns of
activity on a given trial are shown above each layer. These
input neurons project onto an output layer representing
the position of the object based on both the visual and
auditory information.
(B) Behavioral variance of the network (modeled as the
variance of the maximum likelihood estimate of position
based on the output layer activity) as a function of the
number of neurons in the output layer. Red line: lower
bound on the variance given the information available in
the input layer (based on the Cramer-Rao bound). Blue
curve: network with optimal connectivity. The increase in
variance (compared to the red curve) is due to internal
noise in the form of stochastic spike generation in the
output layer. The blue curve eventually converges to the

red curve, indicating that the impact of internal noise is negligible for large networks (the noise is simply averaged out). Green curve: network with suboptimal
connectivity. In a suboptimal network, the information loss can be very large. Importantly, this loss cannot be reduced by adding more neurons; that is, no matter
how large the network, performance will still be well above the minimum variance set by the Cramer-Rao bound (red line). As a result, for large networks, the
information loss is due primarily to suboptimal inference and not to internal noise.
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the activity in the output population, and the ‘‘behavioral vari-

ance’’ to be the variance of this estimate. Our goal is to deter-

mine what contributes more to the behavioral variance: internal

noise or approximate inference.

Figure 4B shows the behavioral variance of the network as

a function of the number of neurons in the output population.

The red line indicates the lower bound on this variance given

the external noise (known as the ‘‘Cramer-Rao bound’’; Papou-

lis, 1991); the variance of any network is guaranteed to be at or

above this line. The blue line indicates the variance of a network

that performs exact inference; that is, a network that optimally

infers the object position from the input populations (see Ma

et al., 2006). The reason this variance is above the minimum

given by the red line is that there is internal noise, which, as

mentioned above, arises from the stochastic spike generating

mechanism. As is clear from Figure 4B, for large numbers of

neurons, this increase is minimal. This is because for a given

stimulus, each neuron generates its spikes independently of

the other neurons, and, as long as there are a large number of

neurons representing the quantity of interest (which is typically

the case with population codes), this variability can be averaged

out across neurons. This demonstrates that, for large networks,

internal noise due to independent near-Poisson spike trains has

only a minor impact on behavioral variability. Of course, this is

unsurprising: independent variability can always be averaged

out. Nonetheless, many models focus on independent Poisson

noise (Deneve et al., 2001; Fitzpatrick et al., 1997; Kasamatsu

et al., 2001; Pouget and Thorpe, 1991; Reynolds and Heeger,

2009; Reynolds et al., 2000; Rolls and Deco, 2010; Schoups

et al., 2001; Shadlen and Newsome, 1998; Stocker and Simon-

celli, 2006; Teich and Qian, 2003; Wang, 2002), and many

experiments measure Fano factor and related indices (DeWeese

et al., 2003; Gur et al., 1997; Gur and Snodderly, 2006; Mitchell

et al., 2007; Tolhurst et al., 1983).

In contrast, the green line shows the extra impact of subop-

timal inference. In this case, the connections between the input

and output layers are no longer optimal: the network now

over-weights the less reliable of the two populations. As a result,
the behavioral variance is well above the minimal value indicated

by the red line. Importantly, the gap between the red and green

lines cannot be closed by increasing the number of output

neurons. Therefore, for large numbers of neurons, a large frac-

tion of the extra behavioral variability is due to the suboptimal

inference, with very little contribution from the internal noise.

This example illustrates that internal noise in the form of

independent Poisson spike trains has little impact on behavioral

variability. This is counter to what appears to be the prevailing

approach to modeling behavioral variability (Deneve et al.,

2001; Fitzpatrick et al., 1997; Kasamatsu et al., 2001; Pouget

and Thorpe, 1991; Reynolds and Heeger, 2009; Reynolds

et al., 2000; Rolls and Deco, 2010; Schoups et al., 2001; Shadlen

and Newsome, 1998; Stocker and Simoncelli, 2006; Teich and

Qian, 2003; Wang, 2002). In addition, it should be clear that the

more severe the approximation, the larger effect it has on

behavior variability. For example, the more the network over-

weights the less reliable cue, the higher the green curve will be

in Figure 4. This latter point is critically important because, as

we argue next, severe approximations are inevitable for complex

tasks.

Why Suboptimal Inference Is Inevitable
Why can’t we be optimal for complex problems? Answering this

requires a closer look at what it means to be optimal. When faced

with noisy sensory evidence, the ideal observer strategy utilizes

Bayesian inference to optimize performance. In this strategy,

the observer must compute the probability distribution over

latent variables based on the sensory data on a single trial.

This distribution—also called the posterior distribution—is

computed using knowledge of the statistical structure of the

task, which earlier we called the generative model. In the polling

example, the generative model can be perfectly specified (by

simply knowing how many people were sampled by each

company, NA = 900, NB = 100), and inverted, leading to optimal

performance.

For complex real-world problems, however, this is rarely

possible; the generative model is just too complicated to specify
Neuron 74, April 12, 2012 ª2012 Elsevier Inc. 33
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Figure 5. Suboptimal Inference on Inputs without Internal Noise
Handwritten digit recognition can be formalized as a problem of modeling
manifolds in n-dimensional space, where n is the number of pixels in the image.
Each point in this space corresponds to one particular image (only two
dimensions are shown for clarity). We show here a schematic representation of
the manifolds corresponding to rotated 2s (red solid line) and 3s (black solid
line). Modeling these manifolds is typically hard and requires approximations.
One common approach involves using a locally linear approximation, shown
here as dashed lines. This approximation would result in misclassifying the
image of the 2 shown with a black background as a 3, as it lies closer to the
linear approximation of the manifold corresponding to 3. This illustrates how
suboptimal inference can affect behavioral performance even when the inputs
are unaffected by internal noise.
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exactly. For instance, consider the case of object recognition.

The generative model in this case specifies how to generate

an image given the identity of the objects present in the

scene. Suppose that one of the objects in a scene is a car. If

there existed one prototypical image of a car from which all

images of cars were generated by adding noise (as was the

case for the pooling example where dA and dB are the true

approval rating plus noise due to the limited sampling), then

the problem would be relatively simple. But this is not the

case; cars come in many different shapes, sizes, and configura-

tions, most of which you have never seen before. Suppose,

for example, that you did not know that cars could be convert-

ibles. If you saw one, you would not know how to classify it.

After all, it would look like a car, but it would be missing some-

thing that may have previously seemed like an essential feature:

a top.

In addition, even when the generative model can be specified

exactly, it may not be possible to perform the inference in a

reasonable amount of time. Consider the case of olfaction.

Odors are made of combinations of volatile chemicals that are

sensed by olfactory receptors, and olfactory scenes consist

of linear combinations of these odors. This generative model

is easy to specify (because it’s linear), but inverting it is hard.

This is in part because of the size of the network: the olfactory

system of mammals has approximately a thousand receptor

types, and we can recognize tens of thousands or more odors

(Wilson andMainen, 2006). Performing inference for this problem

is intractable because obtaining an exact solution requires

an amount of time that is exponential in the number of behavior-

ally relevant odors. Importantly, olfaction is not an exception;

for most inference problems of interest, the computational

complexity is exponential in the total number of variables

(Cooper, 1990).
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Therefore, for complex problems, there is no solution but to

resort to approximations. These approximations typically lead

to strong departures from optimality, which generate variability

in behavior. In general, one expects the variability due to the sub-

optimal inference to scale with the complexity of the problem.

This would predict that a large fraction of the behavioral vari-

ability for a complex task like object recognition is due to subop-

timal inference (which is indeedwhat Tjan et al., 1995, have found

experimentally), while subjects should be close to optimal for

simpler tasks (as they are for instance when asked to detect

a few photons in an otherwise dark room; Barlow, 1956).

In Complex Problems, Suboptimal Inference Increases
Behavioral Variability Even in the Absence of Internal
Noise
So far we have argued that suboptimal inference is unavoidable

for complex tasks and contributes substantially to behavioral

variability. In the orientation discrimination example (Figure 3),

however, it would appear that internal noise, (i.e., stochasticity

in the brain either at the level of the sensors or in downstream

circuits) is also essential, regardless of whether the downstream

inference is suboptimal. Indeed, if we set this noise to zero

(which would have resulted in noiseless input patterns in

Figure 3), the behavioral variability would have disappeared

altogether even for the suboptimal filter. This would imply that

the brain should keep the internal noise as small as possible

since it is amplified by suboptimal inference. However, approxi-

mate inference does not always simply amplify internal noise. For

complex problems, suboptimal inference can still be the main

limitation on behavioral performance even in the absence of

internal noise.

To illustrate this point, we consider the problem of recognizing

handwritten digits. Each image of a particular digit can be repre-

sented as a list, or a vector, of N pixel values, where N is the

number of pixels in the image. This vector corresponds to a point

in an N-dimensional space in which each axis corresponds to

one particular pixel. The set of all points which correspond to

a particular digit, say 2, includes 2s of every possible size and

orientation. This set of points makes up a smooth surface in

this N-dimensional space, also known as a manifold. Figure 5

shows schematic representations of two such manifolds for

the digits 2 and 3 (solid lines). According to this perspective,

object recognition becomes a problem of modeling these mani-

folds, which is typically very difficult because of how they are

curved and tangled in the high-dimensional space of possible

images (DiCarlo and Cox, 2007; Simard et al., 2001). In this

case, there is no alternative but to resort to severe approxima-

tions. For instance, the manifolds might be approximated by

locally linear ones (dashed lines) around certain exemplars

(Simard et al., 2001). New instances of a digit are then classified

according to the closest linear manifold. This procedure results

in misclassifying some digits when irrelevant variables (here,

rotation) change the image beyond where the linear approxima-

tion is good, illustrating that this computation is suboptimal.

Although here orientation and size constitute external noise

because they are irrelevant to the digit classification, there is

no internal noise of any kind in this example: the misclassified

digits lie precisely on the corresponding manifolds. Therefore,
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approximate inference can have a strong impact on performance

even when there is no internal noise.

Implications for the Reliability of Sensors
and Neural Hardware
We have argued that when external and internal noise are

present, suboptimal inference detrimentally affects behavioral

performance much more than internal noise, at least for large

networks. We also argued that suboptimal inference is a greater

problem in more complex tasks. Together, these two observa-

tions could shed light on the reliability of sensory organs. While

some neural circuits are exquisitely finely tuned (e.g., Kawasaki

et al., 1988), others exhibit surprisingly large amounts of vari-

ability, due, for instance, to stochastic release of neurotransmit-

ters or chaotic dynamics of neural circuits. Likewise, the quality

of some of our sensory organs, like proprioceptors or the ocular

lens, is not particularly impressive. The optics of the eye are of

remarkably poor quality and introduce a noninvertible blurring

transformation which severely degrades the quality of the image.

As Helmholtz once said: ‘‘If an optician wanted to sell me an

instrument that had all these defects, I should think myself quite

justified in blaming his carelessness in the strongest terms, and

giving him his instrument back’’ (Cahan, 1995). Bad optics are

not a source of internal noise, but they introduce bias, or system-

atic errors. As is well known in estimation theory, reducing bias

can be done only at the cost of increasing variability (the so-

called bias-variance tradeoff) and, in that sense, bad optics

can contribute to behavioral variability. The key questions are

as follows: why are the optics so bad, and why are there signif-

icant sources of internal noise in neural circuits? One answer

to this question is that the problem of inference in vision is so

complex that the loss of information due to suboptimal inference

overwhelms the loss due to bad optics.

Although we have discussed perceptual problems so far,

similar issues come up in motor control. Proprioception is clearly

central to our ability to move. Patients who have lost propriocep-

tion are unable to move with fluidity (Rothwell et al., 1982). Yet,

our ability to locate our limbs with proprioception alone is quite

poor (van Beers et al., 1998) compared to, say, our ability to

locate our limbswith vision (van Beers et al., 1996). If propriocep-

tion is so critical for movement, why isn’t it more precise?

According to the perspective presented here, it is because the

variance associated with approximations of the limb dynamics

is even larger. Theories of motor control have argued that we

use internal models of the limb dynamics when planning and

controlling motor behaviors (Jordan and Rumelhart, 1992).

However, human limbs are simply too complex to be modeled

perfectly. As a result, neural circuits must necessarily settle for

suboptimal models. If the models are suboptimal and the

approximations are severe, the motor variability will be much

larger than it would be with a perfect model. There is, then, little

incentive to make proprioception very reliable, as further

decreases in the variance of proprioception would only margin-

ally increase motor performance. This could explain why propri-

oception is rather unreliable despite being essential to our ability

to move. This would also predict that a large fraction of motor

variability emerges at the planning stage, where limb dynamics

have to be approximated, rather than, say, in the muscles
(Hamilton et al., 2004) or proprioceptive feedback (Faisal et al.,

2008). This is, indeed, consistent with recent experimental

results (Churchland et al., 2006).
Suboptimal Inference and Neural Variability
How does neural processing that influences behavioral vari-

ability also influence neural variability? In particular, we ask the

following question: suppose a neural circuit has performed

some probabilistic inference task. How would suboptimal infer-

ence affect the neural variability in the population that represents

the variables of interest? The answer, as we will see, is not

straightforward. Most importantly, one should not expect

single-cell variability to reflect or limit behavioral variability.

Uncertainty on a single trial is related to the variability across

trials, the latter being what we call behavioral variability. For

instance, if you reach for an object in nearly complete darkness,

you will be very uncertain about the location of the object. This

will be reflected in a lack of accuracy on any one trial, and large

variability across trials. In general, behavioral variability and

uncertainty should be correlated, and are equal under certain

conditions (Drugowitsch et al., 2012). Here we take them as

equivalent.

Uncertainty is represented by the distribution of stimuli for

a given neural response, the posterior distribution p(sjr). We

define neural variability quite broadly as how neural responses

vary, due both to the stimulus and to noise. Neural variability is

then characterized by the distribution of neural responses given

a fixed stimulus, p(rjs). These two are related via Bayes’ rule,

pðsjrÞfpðrjsÞpðsÞ: (Equation 1)

Since suboptimal inference changes uncertainty (the left hand

side), it must change the neural variability too (the right hand

side).

Given Equation 1, it would be tempting to conclude that an

increase in uncertainty (e.g., in the variance of the posterior

distribution, p(sjr)) implies a decrease in the signal to noise ratio

of single neurons, as measured by, say, the single-cell variance

or the Fano factor. Unfortunately, such simple reasoning is

invalid. The term p(rjs) that appears on the right hand side of

Equation 1 is the conditional distribution of the whole population

of neural activity. It thus captures correlations and higher order

moments, not just single cell variability. As a result the relation-

ship between uncertainty and neural variability is complex.

In the case of a population of neurons with Gaussian noise and

a covariance matrix that is independent of the stimulus, the vari-

ance of the posterior distribution is given approximately by

(Paradiso, 1988; Seung and Sompolinsky, 1993)

s2z
1

f0$
P�1 f0

(Equation 2)

where S is the covariance matrix of the neural responses, f is

a vector of tuning curves of the neurons, and a prime denotes

a derivative with respect to the stimulus, s. For population codes

with overlapping tuning curves, the single cell variability (given by

the diagonal elements of the covariance matrix) has very little

effect on the posterior variance, s2—changes in the single-cell

variability introduce changes in s2 that are proportional to 1/n,
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where n is the number of neurons. Thus, if correlations are such

that the posterior variance is independent of n (as it must be

whenever there is external noise and n is large), single-cell vari-

ability has very little effect on behavioral variability. This is why

the uncertainty of the optimal network asymptotically converges

with increasing n to the minimal achievable behavioral variance

(Figure 4). This convergence has an interesting consequence

for large networks: if we eliminate the stochastic spike genera-

tionmechanism, thus removing all internal noise, behavioral vari-

ability would not decreasemuch at all, as it simply erases the tiny

gap between the blue and red curves in Figure 4.

The insignificant impact of the stochastic spike generation

mechanisms on network performance underscores the limitation

of a very common assumption in systems neuroscience, namely

that a decrease in single cell variance (or Fano factor) is associ-

ated with a decrease in behavioral variability. This assumption

seems consistent with experimental data showing that Fano

factors appear to decrease when attention is engaged (Mitchell

et al., 2007). However, as we have just seen, the single cell

variability has minimal impact on uncertainty, and therefore

behavioral variability.

This has important implications for how suboptimal inference

affects neural variability. A suboptimal generative model can

substantially increase uncertainty. If uncertainty changes, then

something about the neural responses must change to satisfy

Equation 1. And if it is not the single-cell variance, it must be

the tuning curves, the correlations, or higher moments. This

claim can be made more precise if neural tuning curves and

correlations depend only on the difference in preferred stimulus

(Zohary et al., 1994). Under this scenario, improving the quality of

inference performed by the network results in smaller correla-

tions as long as the tuning curves remain the same (Bejjanki

et al., 2011). Again, this is by no means a general rule. If the

tuning curves change as a result of making an approximation

less severe, it is in fact possible to decrease uncertainty while

increasing correlations.

In summary, the relationship between suboptimal inference

and neural variability is complex. With population codes, subop-

timal inference increases uncertainty by reshaping the correla-

tions or the tuning curves or both. Suboptimal inference may

also have an impact on single-cell variability, but in large

networks, changes in single-cell variability alone have only

a minor impact on behavioral performance.

What Suboptimal Inference Explains
Recently, Osborne et al. (2005) argued that 92% of the behav-

ioral variability in smooth pursuit is explained by the variability

in sensory estimates of speed, direction, and timing, suggesting

that very little noise is added in the motor circuits controlling

smooth pursuit. If one were to build a model of smooth pursuit,

a natural way to capture these results would be to inject a large

amount of noise into the networks prior to the visual motion area

MT and very little noise thereafter. Although this is possible, it is

a strange explanation: why would neural circuits be noisy before

MT but not after it? We propose instead that most of the uncer-

tainty (in this case, the variability in the smooth pursuit) comes

from suboptimal inference and that suboptimal inference is large

on the sensory side and small on the motor side. This would
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explain the Osborne et al. (2005) finding without having to invoke

different levels of noise in sensory and motor circuits. And it is,

indeed, quite plausible. MT neurons are unlikely to be ideal

observers of the moving dots stimulus used in their study; they

are more likely tuned to motion in natural images. Therefore,

the approximations involved in processing the dot motion will

result in large stimulus uncertainty in MT. By contrast, it is quite

possible that the smooth pursuit system is near optimal. Indeed,

the eyeball has only 3 degrees of freedom and it is one of the

simplest and most reliable effectors in the human body (it is so

reliable that proprioceptive feedback plays almost no role in

the online control of eye movements; Guthrie et al., 1983).

If this explanation is correct, these results could be modified

by comparing performance for two stimuli that are equally infor-

mative about direction of motion, but for which one stimulus is

closer to the optimal stimulus for MT receptive fields. We predict

that the percentage of the variance in smooth pursuit attributable

to errors in sensory estimates would decrease when using the

near-optimal stimulus. By contrast, if the variance of the sensory

estimates is dominated by internal noise, such a manipulation

should have little effect.

A related prediction can be made about speed perception.

Weiss et al. (2002) have shown that a wide variety of motion

percepts can be accounted for by a Bayesianmodel with a single

parameter, namely, the ratio of the width of the likelihood func-

tion to the standard deviation of the prior distribution. The width

of the likelihood is meant to model any internal noise that may

have corrupted the neural responses (Stocker and Simoncelli,

2006; Weiss et al., 2002). If this is indeed internal noise, this vari-

ance should not be affected by the type of stimulus (e.g., dot

versus Gabor). By contrast, in the framework we propose, the

width of the likelihood is due to a combination of noise and

suboptimal inference. Therefore, this variance should depend

on the stimulus type even when stimuli are equally informative,

since different motion stimuli are unlikely to be processed

equally well. More specifically, let us assume that the cortex

analyzes motion through motion energy filters. Such filters are

much more efficient for encoding moving Gabor patches than

moving dots. Therefore, we predict that the width of the likeli-

hood function, when fitted with the Bayesian model of Weiss

et al. (2002), will be much larger for dots than Gabor patches,

when matched for information content. This prediction can be

readily generalized to other domains beside motion perception.

Similar ideas could be applied to decision making. Shadlen

et al. (1996) argue that the only way to explain the behavior of

monkeys in a binary decision making task given the activity of

the neurons in area MT is to assume an internal source of vari-

ability, called ‘‘pooling noise’’ between MT and the motor areas.

More recent results, however, suggest that, contrary to what was

assumed in this earlier paper, animals do not integrate the

activity the MT cells throughout the whole trial, but stop prema-

turely on most trials due to the presence of a decision bound

(Mazurek et al., 2003). This stopping process integrates only

part of the evidence and, therefore, generates more behavioral

variability than a model that integrates the neural activity

throughout the trial. Once this stopping process is added to

the decision-making model, we predict that there will be no

need to assume that there is internal pooling noise.
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In the domain of perceptual learning and attention, it is

common to test whether Fano factors—a measure of single-cell

variability—decrease as a result of learning or engaging attention

(Mitchell et al., 2007). Such a decrease is often interpreted as

a possible neural correlate of the improvements seen at the

behavioral level. Once again, suboptimal inference provides an

alternative explanation: behavioral improvement can also result

from better models of the statistics of the incoming spikes for

the task at hand, without necessarily having to invoke a change

in internal noise. As shown by Dosher and Lu (1998) and Bejjanki

et al. (2011) experimental results are in fact more consistent with

this perspective than a decrease in internal noise (see also Law

and Gold, 2008). Similar arguments can be made for attention

(L. Whiteley and M. Sahani, 2008, COSYNE, abstract).

The notion of suboptimal inference also applies to sensori-

motor transformations. To reach for an object in the world, we

need to know its position. At the level of the retina, position is

specified in eye-centered coordinates but, to be usable to the

arm, it must be recomputed in a frame of reference centered

on the hand, a computation known as a coordinate transforma-

tion. Sober and Sabes (2005) have demonstrated that this coor-

dinate transformation appears to increase positional uncertainty.

If there is internal noise in the brain, this makes perfect sense: the

circuits involved in coordinate transformations add noise to the

signals, and increase their uncertainty. However, once again,

there is no need to invoke noise. As long as some deterministic

approximations are involved in the coordinate transformations,

one expects this kind of computation to result in extra behavioral

variability and added uncertainty about stimulus location.

Discussion
We have argued that in complex tasks, themain cause of behav-

ioral variability may not be internal noise, but suboptimal infer-

ence caused by approximating the generative model of the

sensory input. We have also proposed that this suboptimal

inference is primarily reflected in the correlations among neurons

and their tuning curves.

Outside of neuroscience, the conclusion that suboptimal infer-

ence is the main cause of behavioral variability is not particularly

original. In fact, this was the conclusion reached a long time ago

in fields like machine learning. It is clear, for example, that the

main factor that limits the performance of image recognition

software is not the amount of internal noise in the camera:

most digital cameras have better optics than the human eye

and more pixels than we have cones. Nonetheless humans

remain extraordinarily better at image recognition than com-

puters. Instead, the bottleneck lies in the quality of the algorithm

performing the inference; that, in turn is determined primarily by

the severity of the approximations required. In neuroscience,

however, we rarely hear the perspective that suboptimal infer-

ence may be the major cause of variability. As we saw, many

models tend to blame internal variability instead (Deneve et al.,

2001; Fitzpatrick et al., 1997; Kasamatsu et al., 2001; Pouget

and Thorpe, 1991; Reynolds and Heeger, 2009; Reynolds

et al., 2000; Rolls and Deco, 2010; Schoups et al., 2001; Shadlen

et al., 1996; Stocker and Simoncelli, 2006; Teich and Qian, 2003;

Wang, 2002). In fact, in most of these models, internal variability

is the only cause of behavioral variability.
A consequence of this conclusion is that internal sources of

noise can be large without affecting behavioral performance—

so long as their impact onbehavioral variability is small compared

to the variability introduced by suboptimal inference. Thus, we

propose an explanation for the surprisingly poor quality of both

the optics of the eye and of proprioceptive signals. Conversely,

if an internal source of noise could have a large impact on behav-

ioral variability, it should be small. In the context of decision

making, one source that could significantly affect the behavior

of the animal is a noisy integrator. Interestingly, recent experi-

ments appear to suggest that, indeed, this integrator has very

small internal noise (B.W. Brunton and C.D. Brody, 2011,

COSYNE, abstract; Stanford et al., 2010).

Note that we are not claiming that the brain is noiseless. There

is internal variability, but we argue that its impact on behavioral

variability is small compared to the impact of suboptimal infer-

ence. Also, we would agree that there are situations in which

stochastic behavior might be advantageous, such as during

motor learning (Olveczky et al., 2005; Sussillo and Abbott,

2009), when exploring a new environment, or when unpredict-

able behavior is used to confuse a predator. In these situations,

the brain might produce internal variability that has a significant

impact on behavior. Stochasticity in the brain could also be used

to perform probabilistic inference via sampling, a well-known

technique in machine learning (Fiser et al., 2010; Moreno-Bote

et al., 2011; Sundareswara and Schrater, 2008). We emphasize,

however, that sampling in the brainmay ormay not lead to signif-

icant extra variability at the behavioral level. On the one hand,

when behavior is based upon the average of a large numbers

samples, added variability due to sampling is small. On the other

hand, when probability distributions are relatively flat (or multi-

modal), a small number of samples could lead to a large increase

in variability (Bialek and DeWeese, 1995; Moreno-Bote et al.,

2011). Finally, when the numbers of neurons is small, as is the

case for instance in insects, it is quite possible that internal vari-

ability is no longer negligible and has an impact comparable to

suboptimal inference.

In summary, we propose that because of the vast redundancy

of neural circuits, noise internal to the brain is a minor contributor

to behavioral variability. Rather, in light of the computational

shortcuts the brain must exploit, we suggest that suboptimal

inference accounts for most of our behavioral variability, and

thus uncertainty, on complex tasks.
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