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In this issue of Neuron, Orbán et al. (2016) test whether the brain represents probabilities by sampling: do
neurons interpret the world by generating causal explanations of sense data and quickly sample different in-
terpretations over time? Orbán et al. (2016) find agreement between this model’s predictions and neural data.
Neuroscience still lacks a coherent theory

of neural computation. One compelling

candidate is probabilistic inference (Knill

and Richards, 1996), which offers a gen-

eral framework for developing specific hy-

potheses and has been successfully used

to explain a wide variety of human and an-

imal behaviors. This provides an elegant

way of understanding brain function at

Marr’s computational level (Marr, 2010),

but we know neither the brain’s algorithm

nor neural mechanisms underlying such

computation. In this issue of Neuron,

Orbán et al. (2016) develop and test

predictions for a neural representation

of probabilities that could be used in an al-

gorithm of probabilistic computation. This

representation is known as the sampling

hypothesis.

The idea that the brain computes by

modeling probabilities of the world has

many proponents, starting with Helmholtz

(1925), who described perception as un-

conscious inference. In the kind of infer-

ence he advocated, ‘‘objects are always

imagined as being present in the field

of vision as would have to be there in

order to produce the same impression

on the nervous mechanism’’ (Helmholtz,

1925). This idea is now called ‘‘analysis

by synthesis’’ (Yuille and Kersten, 2006).

The central claim is that the brain analyzes

its sense data by using a mental model of

the environment and then tries to find a

configuration of objects in the world that

could plausibly synthesize (i.e., generate

or explain) that sense data. Such a

mental model is useful because while

the brain can never directly observe these

objects, it can create an internal model

(called a ‘‘generative model’’) that would

generate its range of experiences and

select good interpretations from that

repertoire.
According to generative models, neural

activity is supposed to emulate causal

variables that explain or generate the

observed sensory data. For example,

an active orientation-selective neuron in

primary visual cortex would signal that

its preferred orientation accounts for

an image patch with an edge feature.

Furthermore, neurons in higher areas

might signal that a particular object could

explain the broad pattern of visual inputs

and would interact with lower-level neu-

rons that explain finer sensory details.

This line of reasoning about neural

computation may feel backward to many

who are accustomed to thinking about

the brain mechanistically, for instance in

terms of receptive fields and activation

functions. After all, it is the stimulus which

activates the neurons and not the other

way around.

These two perspectives are fully

compatible, however, and are just two de-

scriptions of the same activity patterns.

The generative account even entails that

neurons must have receptive fields,

because the neurons would be activated

whenever the stimulus contains patterns

that those neurons’ preferred features

can explain. Generative models have

additional power because they can pre-

dict what types of object properties

should be useful in a given natural

environment.

Note that analysis by synthesis does

not intrinsically require probabilistic

computation, using explanations that are

sensitive to uncertainty. However, even

with good mental models, sense data

is always uncertain. Moreover, imperfect

models can increase uncertainty further

(Beck et al., 2012). For this reason, the

brain benefits from representing and

weighing uncertainties for its hypotheses.
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How might the brain do this? One

convenient classification of probabilistic

representations is as spatial or temporal

(Savin and Denève, 2014).

In spatial representations of uncer-

tainty, such as probabilistic population

codes (Ma et al., 2006), the spatial pattern

of neural activity encodes a probability

distribution.

Others advocate instead for a temporal

representation of probabilities. Here is

where the sampling hypothesis enters

(Hoyer and Hyv€arinen, 2002; Orbán

et al., 2016). In this model, the brain has

only a point estimate of the latent vari-

ables at a single time, and uncertainty is

defined by the variety of interpretations

sampled across time: uncertainty about

the world is represented by temporal vari-

ability in neural responses.

Sampling has been invoked to explain

behavioral effects, such as bistable

perception (Moreno-Bote et al., 2011)

and decision biases (Vul et al., 2014).

Here Orbán et al. (2016) show that

sampling also accounts for many neural

response properties.

In order to make concrete predictions

for neural activity, Orbán et al. (2016) pro-

pose amodel that relates neural activity to

samples in a specific generative model for

vision. They hypothesize that each neuron

in primary visual cortex corresponds

to one image feature (an oriented edge

patch or Gabor function) that could

explain the visual input and that the neu-

ron’s membrane potential corresponds

to the amplitude of this feature (Figures

1A–1C). When the membrane potential

hovers near one value, then this indicates

that the brain is confident about the ampli-

tude of this feature. When the membrane

potential fluctuates widely, then this indi-

cates the brain is very uncertain about
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Figure 1. Cartoon of the Sampling Hypothesis
The sensory input (A) is explained or interpreted as superpositions of visual features (B). Each neuron specifies one feature, and its membrane voltage determines
the amplitude of that feature. In the illustration, feature amplitude is depicted by opacity and time by color (C). Different interpretations of the image are sampled
sequentially and appear as feature amplitudes—or equivalently in this sampling model, voltages—that change over time. The set of possible interpretations
determines the posterior probabilities (D) both over multiple features jointly (top) and over individual features (bottom). Photo credit: Xaq Pitkow.
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what amplitude best explains the visual

input.

Just as variability in single membrane

potentials reflects the probability distribu-

tion over amplitudes of the corresponding

feature, covariability between multiple

neurons reflects joint probabilities over

the amplitudes of multiple features (Fig-

ures 1C and 1D).

When there is no visual stimulus, the

brain exhibits spontaneous activity. Yet,

we recognize darkness as dark and do

not generally hallucinate complex pat-

terns. According to the model of Orbán

et al. (2016), this is because the brain’s in-

ternal model includes a global contrast

variable that scales all features together

(Wainwright and Simoncelli, 2000). This

contrast variable explains sense data in

the dark, freeing the neural activity to

explore random patterns without causing

random percepts.

In fact, according to this sampling

model, spontaneous activity patterns in

the dark are samples generated from the

brain’s prior probability over possible

world configurations. Interestingly, the

spontaneous activity should match the

evoked activity averaged over all natural

images, a prediction that enjoys some

empirical support (Berkes et al., 2011; Or-

bán et al., 2016; but seeOkun et al., 2012).
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One thing that makes predictions of

the model difficult to test is that the

generative causes of interest are sup-

posed to be membrane potentials. These

are much harder to measure, particularly

simultaneously, than neural spiking.

Orbán et al. (2016) therefore describe a

simple nonlinear model to relate voltage

to spiking activity.

By combining their sampling model

with this spiking model, Orbán et al.

(2016) can then directly compare several

properties of their sampling representa-

tion to neural properties extracted from

publicly available experimental data. In

each case, they process their simulated

data in the identical ways as the published

neurophysiological data.

These comparisons show that their

model naturally reproduces the observed

Fano factors, which are greater for spon-

taneous activity than for evoked activity.

The model demonstrates the same match

between signal correlations, noise corre-

lations, and spontaneous correlations

that is seen in neural data. Again, like the

neural data, their model also exhibits

sparser and more reliable responses

when the visual stimuli provide greater

context for a given image patch. The

agreements are remarkable, especially

given that there are just a handful of free
model parameters that are fixed across

all comparisons against diverse datasets.

These successes of the sampling hypoth-

esis should certainly encourage further

investigations.

How could the brain generate samples?

The work of Orbán et al. (2016) is agnostic

about the neural mechanisms. But the

basic notion is that the uncertainty associ-

ated with each possible input is encoded

implicitly in the network connectivity and

stochastic neural response properties.

Samples of the target probability distri-

bution are then created by the circuit

dynamics.

Note that any representation could be

trivially considered probabilistic just by

applying Bayes’ rule. But the value of a

probabilistic representation depends on

whether subsequent computations take

advantage of that representation. Thus,

it is crucial to ask, how would the brain

use these samples?

One natural use of samples is integra-

tion over a probability distribution. Sam-

ples could be passed through some

nonlinearity representing a reward func-

tion. Decision-making circuits could then

integrate the results over time to obtain

the expected reward and identify the

best action as the one that maximizes

the expected reward.
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In contrast, temporal integration of evi-

dence does not seem to be a natural use

of sampling, at least in its current incarna-

tion. This is because percepts become

more reliable at greater viewing durations,

whereas sampling longer does not reduce

uncertainty, but instead just specifies it

better. Neural responses from a sampling

process could be simply integrated over

time, which would improve the reliability

of derived estimates, but then this would

be a departure from the reported sam-

pling representation. It is appealing and

certainly worthwhile to search for a gen-

eral-purpose neural architecture. How-

ever, since different tasks present

different computational demands, it re-

mainspossible that thebrain usesdifferent

representations for different tasks.

Spatial and temporal representations of

probabilities each have experimental sup-

port in different aspects, but each faces

major difficulties in representing arbitrary

multivariate distributions: spatial codes

require a number of neurons that grow

exponentially with the number of vari-

ables, whereas temporal codes can

require arbitrarily long times to sample

all probable states. It may be that some

hybrid spatiotemporal representation

(Lee and Mumford, 2003; Savin and De-

nève, 2014) can capture the best aspects

of each model.

Of course, the natural world is not arbi-

trary, but highly structured, a fact that any
algorithm must exploit. As a simple foray

for considering the effects of a hierar-

chically structured environment, Orbán

et al. (2016) vary an image aperture to pro-

vide more image context. They show that

the consequences are the same as for an

increase in contrast, both in their model

and in neural data. Simple cases like this

are crucial stepping stones for testing

the sampling hypothesis. Ultimately, any

theory will have to grapple with how the

brain handles more complex, statistical

structure as well (Haefner et al., 2016).

Sampling is a common and broadly

applicable class of techniques in machine

learning for computing with complex

probabilistic models. Yet, accurate sam-

pling remains a major practical challenge,

and new variations are developed contin-

ually. If the brain does compute with sam-

pling, and has found a clever trick for

doing so efficiently, then we could adapt

that trick to our own technology. Perhaps

sampling can go some way toward ex-

plaining how we think and could even

help us think better.
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