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SUMMARY

Path integration is a strategy by which animals track
their position by integrating their self-motion veloc-
ity. To identify the computational origins of bias in
visual path integration, we asked human subjects
to navigate in a virtual environment using optic
flow and found that they generally traveled beyond
the goal location. Such a behavior could stem from
leaky integration of unbiased self-motion velocity
estimates or from a prior expectation favoring
slower speeds that causes velocity underestimation.
Testing both alternatives using a probabilistic frame-
work that maximizes expected reward, we found that
subjects’ biases were better explained by a slow-
speed prior than imperfect integration. When sub-
jects integrate paths over long periods, this frame-
work intriguingly predicts a distance-dependent
bias reversal due to buildup of uncertainty, which
we also confirmed experimentally. These results
suggest that visual path integration in noisy environ-
ments is limited largely by biases in processing optic
flow rather than by leaky integration.

INTRODUCTION

The world is inherently noisy and dynamic. To act successfully,

we must continuously monitor our sensory inputs, gather evi-

dence in favor of potential actions, and make subjectively

good decisions in the face of uncertain evidence. Traditional

binary decision tasks lack the temporal richness to shed light

on continuous behaviors in demanding environments (Lee

et al., 2014; Pitkow and Angelaki, 2017). Newer ‘‘continuous

psychophysics’’ methods (Bonnen et al., 2015; Mulligan et al.,

2013) can constrain models much more rapidly and can be elab-

orated to simulate real world challenges. Here, we develop a

naturalistic visuomotor virtual navigation task with controllable

sensory uncertainty and provide a unified framework to under-
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stand how dynamic perceptual information is combined over

time. We then use this framework to understand the origins

of bias in path integration—a natural computation that in-

volves sensory perception, evidence accumulation, and spatial

cognition.

Path integration is a navigation strategy used to maintain a

sense of position solely by integrating self-motion information.

Humans and animals are capable of path integrating (Alyan

and Jander, 1994; Benhamou, 1997; Collett and Collett, 2000;

Etienne, 1992; Loomis et al., 1999; Seguinot et al., 1998), albeit

often with systematic errors (or biases). Biases have been

observed in many species under a variety of experimental condi-

tions involving visual (Bakker et al., 2001; Frenz and Lappe, 2005;

Lappe and Frenz, 2009; Redlick et al., 2001) and/or body-based

(J€urgens et al., 1999; Klatzky et al., 1990; Loomis et al., 1993;

e.g., vestibular and proprioceptive) self-motion cues, yet their

origins are not fully understood.

Broadly speaking, path integration entails two stages—esti-

mating one’s self-motion and integrating that estimate over

time. Most previous accounts of behavioral biases in path inte-

gration implicate the latter, arguing for suboptimal integration

of movement velocity that produces errors that increase with

time (Mittelstaedt and Glasauer, 1991; Mittelstaedt and Mittel-

staedt, 2001; Vickerstaff and Di Paolo, 2005) or distance (Berg-

mann et al., 2011; Brossard et al., 2016; Lappe et al., 2007,

2011). However, past modeling approaches were dominated

by attempts to fit empirical functions using only subjects’ final

states at the end of the integration process, without considering

the performance constraints imposed by noise in the sensory

inputs. This has led to the view that bias in path integration is

due to leaky integration—a severely suboptimal strategy that is

inconsistent with studies in other domains demonstrating statis-

tically optimal behavior in static and dynamic binary tasks

(Bogacz, 2007; Brunton et al., 2013; Ernst et al., 2012; Fiser

et al., 2010; Issen et al., 2015; Jogan and Stocker, 2013).

An alternative explanation is that the bias stems from errors in

sensory estimates—e.g., from bias in velocity estimation or from

incorrectly accumulating perceptual uncertainty over time. For

example, human judgement of retinal speed is known to be

biased, and this is well explained by a Bayesian observer model

with a slow-speed prior (H€urlimann et al., 2002; Sotiropoulos
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et al., 2014; Stocker and Simoncelli, 2006;Weiss et al., 2002). If a

similar prior biases our judgement of self-motion velocity, this will

naturally lead to path integration biases, even if the integration

itself is perfect. This alternative explanation has been invoked

previously to explain bias in integrating passive angular rotations

(J€urgens and Becker, 2006) and proposed to be important for

path integration in general (Petzschner and Glasauer, 2011).

However, this proposal has never been rigorously tested against

explanations based on leaky integration. These two alternatives

have very different implications for neural models of evidence

accumulation under uncertainty, so it is important to distinguish

them. Finally, to our knowledge, past studies of path integration

considered integration of either angles or distance, but not both.

Therefore, it is unclear whether those findings would generalize

to navigation in the real world.

To more directly determine whether bias in path integration

under naturalistic conditions stems mainly from a slow-speed

prior or suboptimal integration, we tested human subjects on a

task in which they navigated within a horizontal plane using

sparse optic flow. We found that subjects underestimated both

linear and angular displacements when navigating short dis-

tances. We analyzed these data using a mathematical theory

that includes components for sensory processing, integration

dynamics, and decision making. Our analysis revealed that the

behavioral errors can be explained by a model in which subjects

maximized their expected reward under the influence of a slow-

speed prior rather than by leaky integration of unbiased velocity

estimates. This result was confirmed in a separate experiment, in

which we tested the predictions of both models by manipulating

the reliability and the range of optic flow. In addition, when

extended to longer distance scales, the model predicts a poten-

tial reversal in the pattern of bias from overshooting to under-

shooting due to buildup of uncertainty, and we also confirmed

this prediction experimentally. These findings suggest that

human subjects can maintain a dynamic probabilistic represen-

tation of their location while navigating, and their ability to path

integrate is limited largely by brain structures that process self-

motion rather than by circuits that integrate velocity estimates

based on optic flow.

RESULTS

We asked human subjects to perform a visual navigation task in

which they used a joystick to steer to a cued target location in a

virtual environment devoid of allocentric reference cues (Fig-

ure 1A; Videos S1 and S2; STAR Methods). At the beginning of

each trial, a circular target blinked briefly (�1 s) at a random loca-

tion on the ground plane, after which it disappeared and the

joystick controller was activated. The joystick had two degrees

of freedom that controlled forward and angular velocities, allow-

ing the subject to steer freely in two dimensions (Figure 1B).

Subjects were instructed to stop steering when they believed

their position fell within the target, but did not receive any perfor-

mance-related feedback. Target locations were varied randomly

across trials and were uniformly distributed over the ground

plane area within the subject’s field of view (Figure 1C, top).

The subject’s movement trajectory was recorded throughout

each trial (Figure 1C, bottom).
Behavioral Data
The subject’s ‘‘response location’’ was given by their stopping

position at the end of each trial. We quantified behavioral error

on each trial by comparing the response location against the

target location. Figure 1D (left) shows an aerial view of the target

location and one subject’s trajectory during a representative trial.

On this trial, the error vector points radially outward and away

from straight ahead, implying that the subject overshot the target

both in terms of the net distance moved as well as the net angle

rotated. The vector field of errors across all trials revealed a qual-

itatively similar pattern of errors throughout the experiment (Fig-

ure 1D, right).

To quantify these errors, we separately compared the radial

distance and angular eccentricity of the target to those of the

subject’s response location in each trial. We found a systematic

bias underlying the response errors in both quantities: this sub-

ject consistently traveled a greater distance and rotated through

a greater angle than necessary (Figure 1E). We observed similar

biases across subjects (Figure S1A), and these biases were well

described by a simple linear model with multiplicative gain

scaling, rather than an additive shift, of the subjects’ estimates

of their net displacement and rotation (mean coefficient of deter-

mination, R2 across subjects—distance, 0:70±0:12; angle,

0:92±0:11). Moreover, thismultiplicativemodel was able to cap-

ture �95% of the variance explained by more complicated

nonlinear models (see legend of Figure S1A). Therefore, instead

of quantifying bias in units of distance and angle, we used the

slopes of the corresponding linear regressions (i.e., the gain) as

a measure of bias in radial distance and angle for each subject.

In this scheme, slopes greater than and less than unity corre-

spond to overshooting and undershooting, respectively,

whereas unity (not zero) slope corresponds to unbiased perfor-

mance. Both radial and angular biases were significantly greater

than unity across subjects (Figure 1F; mean distance bias

[±SE], Gr = 1:19±0:07; p = 4:13 10�2; t test; mean angle

bias, Gq = 1:78±0:16; p = 2:83 10�3).

We varied target locations across trials to preclude the use of

strategies based only onmovement duration. Nevertheless, sub-

jects may have been encouraged to use such a strategy due to

the inherent relationship between distance and time. To test

this, we randomly interleaved trials in which we removed all

ground plane elements, thereby eliminating optic flow. The

correlation between target and response locations dropped sub-

stantially in these trials (Figure S1B), implying that subjects relied

heavily on optic flow cues, rather than a mental clock, to perform

the task.

We allowed subjects to freely control their velocity at all times

and found modest variability in average velocity across trials.

This trial-by-trial variability in velocity was uncorrelated with

trial-by-trial variability in subjects’ radial and angular position

biases (Figure S1C), suggesting that movement velocity within

the rangewe observed does not influence subjects’ path integra-

tion errors during self-generated movement. Such a velocity-in-

dependent bias can arise if bias in velocity estimation is multipli-

cative, and we quantitatively model and test this phenomenon

later. Velocities varied across time differently for different sub-

jects as well: four of the seven subjects used a serial strategy,

first rotating and then moving straight ahead to reach the target
Neuron 99, 194–206, July 11, 2018 195



Figure 1. Task Structure and Behavioral

Response

(A) Subjects use a joystick to navigate to a cued

target (yellow disc) using optic flow cues generated

by ground-plane elements (orange triangles). The

ground-plane elements appeared transiently at

randomorientations toensure that theycannotserve

as spatial or angular landmarks (STAR Methods).

(B) Left: the time course of linear (top) and angular

(bottom) speeds during one example trial. Time is

also encoded by line color. Right: aerial view of the

subject’s spatial trajectory during the same trial is

shown.

(C) Top: aerial view of the spatial distribution of

target positions across trials. Bottom: subject’s

movement trajectories during a representative

subset of trials are shown.

(D) Left: target location (solid black) and subject’s

steering response (colored as in B) during a

representative trial. Red arrow represents the error

vector. Right: vector field denoting the direction of

errors across trials is shown. The tail of each

vector is fixed at the target location, and vectors

were normalized to a fixed length for better visi-

bility. The grayscale background shows the spatial

profile of the error magnitude.

(E) Top right: comparison of the radial distance ~r of

the subject’s response (final position) against

radial distance r of the target across all trials for

one subject. Bottom right: angular eccentricity of

the response ~q versus target angle q is shown.

Black dashed lines have unity slope, and the red

solid lines represent slopes of the regression fits.

Left: geometric meaning of the quantities in the

scatterplots is shown.

(F) Radial and angular biases were quantified as the

slopesof the corresponding regressionsandplotted

for individual subjects. Error bars denote 95% con-

fidence intervals of the respective slopes. Dashed

lines indicate unbiased radial or angular position

responses. Solid diagonal line has unit slope.

See also Figures S1 and S2 and Videos S1 and S2.
(Figures S2A and S2B), while the remaining subjects traveled

along curvilinear trajectories. Subjects with both strategies had

comparable radial and angular biases (Figure S2C), suggesting

that they do not benefit from integrating the angular and linear

components separately. This finding also shows that over-

shooting is not restricted to cases in which subjects make curvi-

linear trajectories.

Finally, we introduced angular landmarks in the environment

by displaying a distant mountainous background (Fig-

ure S2D). This manipulation did not alter the radial bias but

eliminated angular bias almost completely (Gr = 1:29±0:08;

Gq = 1:1±0:04; Figure S2E). This suggests that biasesmeasured

in the absence of landmarks reflect errors in spatial perception

rather than problems associated with motor control. To further

validate this, we conducted an additional experiment in which

we passively transported subjects over trajectories that passed

through the targets at a constant velocity, thereby eliminating

motor control (STAR Methods; Figure S2F). Subjects simply

pressed a button to indicate when they believed they had

reached the target. Again, we observed overshooting that scaled
196 Neuron 99, 194–206, July 11, 2018
linearly with the radial distance of the target (Gr = 1:38±0:1; Fig-

ure S2G). Note that a delay in pressing the button would produce

an identical bias at all distances (i.e., additive bias) and thus

cannot explain the above result.

Together, these data suggest that subjects overshoot when

using optic flow to navigate modest distances regardless of

the precise speed or curvature of the trajectory, and this bias

is due to a systematic error in the subject’s perception, not

action.

Dynamic Bayesian Observer Model
Past studies have attributed biases in path integration to leaky

integration (Lappe et al., 2007, 2011; Mittelstaedt and Glasauer,

1991; Mittelstaedt and Mittelstaedt, 2001; Vickerstaff and Di

Paolo, 2005). According to those behavioral models, subjects

forget part of their movement history, leading to sub-additive

accumulation of self-motion information. Consequently, they un-

derestimate their distance moved and end up traveling further

than necessary, overshooting the target. We asked whether

the overshooting could instead result from accurate integration



Figure 2. DynamicBayesianObserverModel

Subjects combine noisy sensory evidence from

optic flow with prior expectations about self-mo-

tion speed to perform probabilistic inference over

their movement velocity. The resulting noisy ve-

locity estimates are integrated to generate beliefs

about one’s position. Bias in position estimation

might come about from two extreme scenarios —

a velocity prior that favors slower speeds coupled

with perfect integration (green) or a uniform prior

over velocity coupled with leaky integration (pur-

ple). For simplicity, this schematic shows the one-

dimensional case. For general planar motion, both

linear and angular velocity must be inferred and

integrated to update position in two dimensions.
of inaccurate, biased velocity estimates. Specifically, if subjects

were to underestimate their linear and/or angular movement

velocities, accurate integration might yet lead to overshooting.

In fact, human subjects are known to underestimate retinal ve-

locities, and those effects have been successfully attributed to

a slow-speed prior using Bayesian theories (H€urlimann et al.,

2002; Sotiropoulos et al., 2014; Stocker and Simoncelli, 2006;

Weiss et al., 2002).

We hypothesized that such a slow-speed prior might also un-

derlie the biases observed in our experiments. We tested this

possibility against the alternative of leaky temporal integration

using the framework of a dynamic Bayesian observer model. In

this framework, we explicitly model the subject’s belief, i.e.,

the subjective posterior distribution, which is the posterior over

position given its model assumptions. This is computed across

two stages: combining noisy optic flow input with a prior belief

to compute the posterior over self-motion velocity (inference

step) and integrating the resulting posterior with a constant

leak rate (integration step). Because the position estimate is

uncertain, we used this framework to identify model parameters

that maximized the expected reward, a quantity that takes both

the mean and uncertainty in position into account. Although we

will shortly show that the above behavioral results can be under-

stood purely in terms of a bias in subjects’ mean position esti-

mates, we will also show in a later section that uncertainty plays

a pivotal role in influencing responses when navigating larger

distances.

Because position is computed by integrating velocity, bias in

position estimates can originate either from bias in velocity

estimation or from imperfect integration. We modeled the

distinction between these two hypotheses within the proposed

framework by manipulating the shape of the prior to be expo-

nential or uniform, and the nature of integration to be perfect or

leaky (Figure 2). At one extreme, the combination of an expo-

nential prior and perfect integrator would attribute path integra-

tion bias entirely to underestimation of self-motion velocity. At

the other extreme, a uniform prior would yield unbiased veloc-

ity estimates, which, if integrated with leak, could also lead to a

bias as proposed by other studies. We will refer to the above

two instantiations as the ‘‘slow-speed prior’’ and the ‘‘leaky

integrator’’ models, respectively. We assumed a Gaussian

velocity likelihood whose variance scales linearly with the

magnitude of measurement, as it yields a convenient mathe-
matical form for the mean and variance of velocity estimates

(STAR Methods; Equations 1.1 and 1.2). This choice of likeli-

hood function does not conform to Weber’s law. However,

because the same parameterization was used for both models,

this assumption does not intrinsically favor one model over

another. We show later that our main conclusions also hold

for alternative parametrizations and in particular also for log-

normal likelihoods, which do follow Weber’s law. Furthermore,

we assumed that the noise in optic flow measurements is

temporally uncorrelated so that the mean and variance of the

integrated position estimates change at the same rate in both

models (STAR Methods). Later, we relax this assumption to

examine path integration bias for a more general class of inte-

grated noise models.

Although both the slow-speed and the leaky integration

models can lead to overshooting, they attribute the bias to two

very different sources—velocity underestimation or leaky dy-

namics. For uniform motion in one dimension, this difference

can be readily detected by observing how the subject’s bias

scales with distance: the bias due to a slow-speed prior will scale

linearly, whereas leaky integration produces a sub-linear scaling,

ultimately leading to saturating estimates of position. However,

when velocity changes over time, distinguishing the models

requires analyzing the subject’s entire movement history rather

than just comparing the pattern of bias in the stopping position.

This framework allows us to incorporate measurements of the

subject’s time-varying velocities to fit and distinguish the

models.

Because the task was performed on a two-dimensional

ground plane, subjects had to infer and integrate two compo-

nents of their velocity (linear and angular). We assumed the

two velocity components were integrated by separate integra-

tors with possibly different time constants (STAR Methods;

Equations 2.1 and 2.2). Consequently, both models had four

free parameters (STARMethods): two likelihood widths to repre-

sent uncertainties in linear and angular velocity and either two

exponents to represent priors for those same components (for

the slow-speed prior model) or two time constants to represent

rates of leak in integrating them (for the leaky integrator model).

Additionally, we fit a two-parameter ‘‘null’’ model that attributed

subjects’ movements entirely to random variability, as well as a

‘‘full’’ model with six parameters that featured both exponential

priors and leaky integrators.
Neuron 99, 194–206, July 11, 2018 197



Figure 3. Model Comparison and Validation

(A) Posterior probability distribution over position implied by the best-fit slow-

speed prior (left, green) and leaky integrator (right, purple) models, swept over

time during an example trial for the subject with the largest bias. The distri-

butions at different time points were rescaled to the same height, so these

plots reflect this subject’s relative beliefs about his location across the

duration of the trial. Target location (yellow dot) and the actual trajectory

(black line) have been overlaid. Yellow ellipses depict an isoprobability con-

tour (68% confidence interval) of the model posteriors over position at the

end of the trial.

(B) Vector field of errors in the mean estimate of final position across trials for

the two models. Error vectors of both models were rescaled to minimize

overlap. The spatial profiles of the error magnitude (distance between target

198 Neuron 99, 194–206, July 11, 2018
Model Fitting and Comparison
For each subject, we fit the models using the sequences of ve-

locities along each trajectory. The models infer and integrate

these velocity inputs and, depending on their parameters,

generate specific trajectory estimates. Trajectories of different

models correspond to the subject’s believed (rather than actual)

positions during the trial. Our probabilistic framework assumes

that subjectsmaintain estimates of both themean and the uncer-

tainty about their location and steer to the target to achieve the

greatest possible reward. We therefore fit the models to maxi-

mize the subject’s expected reward, defined as the overlap

between the posterior distribution over their position and the

target region at the end of each trial (STARMethods; Equation 3).

We found that the slow-speed prior model was about 1.35

times more likely per trial than the leaky integrator model for

each individual subject. Multiplying this ratio over all trials, this

means that speed misperception from a slow-speed prior is an

overwhelmingly more likely explanation of subjects’ path inte-

gration biases than leaky integration (Figure S3A; mean [±SE]

log-likelihood ratio across subjects, 66.6 ± 18.2). Both models

had substantially greater likelihoods than the null model, with

larger improvements when biases were larger because the null

model could not explain any bias (Figure S3B).

Because the evidence supporting both the slow-speed prior

and leaky integration models was correlated, we asked whether

subjects’ behavior may have been influenced by both. To test

this, we fit a model that incorporated both exponential prior

and leaky integration. This full model was not much better at ex-

plaining subjects’ responses than the slow-speed prior model

(Figure S3C). Moreover, for all subjects, the best-fit time con-

stants of integration in the full model were much greater than

the average trial duration (Figure S3D), implying that integration

was nearly perfect in this model. Therefore, leaky integration

could not explain any appreciable variability in the data in excess

of what was already explained by the slow-speed prior.

We wanted to know why the slow-speed prior model per-

formed better. A good behavioral model will believe that subjects

should stop moving where they do stop. This means that the

model’s beliefs about its position should be concentrated near

the true target, even when the actual position has overshot. To

evaluate this, we used the best-fit model parameters to recon-

struct the subjects’ beliefs, given by the posterior distribution

over their position throughout each trial as they steered toward

the target. Belief trajectories implied by the two models during

an example trial are shown in Figure 3A. Because the model
and mean estimated final position) for the two models are shown by the

grayscale background.

(C) Subject’s internal estimates of the radial distance (br , left) and angle

(bq, right), not to be confused with the subject’s actual response ~r and ~q in

Figure 1E, are plotted against target distances and angles for the subject in (A)

and (B). Internal estimates implied by the slow-speed prior and leaky integrator

models are shown in green and purple, respectively. Model estimates for each

trial are shown as vertical bars centered on the mean and ±1 SD in length.

(D) Bias in model estimates (termed ‘‘residual bias’’) of radial distance and

angle for the two models, obtained by cross-validation (STAR Methods). Error

bars denote ±1 SEM obtained via bootstrapping. Dashed lines indicate unbi-

ased radial or angular position estimates. Solid diagonal line has unit slope.

See also Figure S3.



has a cloud of uncertainty over position, the plots actually show

this cloud of beliefs swept out over time. This is overlaid with the

subject’s actual trajectory and the target position. On this trial,

the beliefs implied by the slow-speed prior model (Figure 3A,

left) terminated near the target, indicating that the subject

strongly (and wrongly) believed he steered to the target location.

On the other hand, the leaky integrator model believes it

completely missed the target (Figure 3A, right), contradicting

the basic premise that the subject is making a subjectively

good decision.

This difference between the models’ estimates of the final

position was consistent across trials, as revealed by the much

greater estimation error magnitudes for the leaky integrator

model (Figure 3B, gray level). Moreover, unlike the slow-speed

prior model, the vector field of errors in the estimates generated

by the leaky integrator model was non-random (Figure 3B,

arrows), betraying this model’s inability to fully account for the

subject’s systematic errors. Note that the above model esti-

mates are meant to reflect subjects’ internal beliefs about their

position (which should be nearly unbiased) rather than their

actual positions (which we know are biased). So the near-zero

estimation error magnitude of the slow-speed prior model (Fig-

ure 3B) suggests that this model is almost entirely able to explain

away the subject’s bias.

To assess the difference in the quality of fits of the twomodels,

we compared the final position estimates generated by each of

the twomodels against the target position (Figure 3C). This com-

parison is similar to the one used to evaluate subjects’ responses

(Figure 1E), except that we now replace the subject’s actual

position with the model estimates. We emphasize that we are

modeling the subject’s internal estimates, not predicting their

external response. Therefore, the quality of the model estimates

should be assessed by comparing against the unit slope, not by

comparing with Figure 1E. For the example subject shown in Fig-

ure 3C, it canbe readily seen that the estimates of the slow-speed

prior model were in reasonably good agreement with target dis-

tances and angles. However, estimates generated by the leaky

integrator model were still biased, and those biases were partic-

ularly large for nearby targets. Intuitively, this is because nearby

targets only require short integrations, so the leak does not

have time to take effect. Consequently, the leaky integrator

model is objectively accurate at short times and thus cannot

account for the subjective biases in those trials, leading to a rela-

tively poor fit. On the other hand, the slow-speed prior model at-

tributes path integration bias to velocity underestimation, a bias

that persists at all times and thus generalizes well across trials.

We quantified the goodness of fit of the models by computing

residual biases in the model estimates of radial distance and

angle using a 4-fold cross-validation procedure (STAR

Methods). These residual biases were not significantly different

from unity across subjects for the slow-speed prior model

(mean ± SEM residual radial bias = 1:03±0:04, p = 0.27, t test;

residual angular bias = 1:01±0:1, p = 0.36). On the other hand,

residual biases of the leaky integrator model were significantly

greater than unity (residual radial bias = 1:09±0:06, p = 3.2 3

10�2; residual angular bias = 1:31±0:14, p = 3.43 10�3). There-

fore, the slow-speed prior model provided a much better

account of subjects’ biases (Figure 3D).
Recent studies on path integration have modeled leak using

space constants instead of time constants, so that the integra-

tion dynamics are only active during movement. We formulated

a variation of the model based on space constants (STAR

Methods) and found that it still performed worse in predicting

subjects’ responses than the slow-speed prior model (Fig-

ure S3E). This is not surprising because spatial leak suffers

from the same problem responsible for the relatively poor perfor-

mance of the model with temporal leak. Finally, to verify consis-

tency with the family of Bayesian models previously used in

psychophysics, we considered other parameterizations of the

slow-speed prior and leaky integrator models that incorporate

a Gaussian prior (H€urlimann et al., 2002) or a log-normal likeli-

hood (J€urgens and Becker, 2006; Stocker and Simoncelli,

2006), and we fit each alternative (STAR Methods). On average,

the slow-speed prior model continued to outperform the leaky

integrator model in all cases (Figure S3F), indicating that our con-

clusions are robust to the specific choices of shapes of the prior

and likelihood.

Test of Model Predictions
The likelihood comparison above clearly favors attributing the

path integration bias to a slow-speed prior over leaky integration

of velocity estimates. This makes new predictions, which we

tested experimentally by manipulating parameters of the task.

One manipulation involved changing the reliability of optic flow

by varying the density of the ground plane elements between

two possible values (‘‘sparse’’ and ‘‘dense’’). A hallmark of

Bayesian inference is that, for unimodal non-uniform priors and

symmetric likelihood functions, the bias increases for less reliable

observations. Therefore, if subjects had a slow-speed prior,

sparse optic flow would increase how much they underestimate

their velocity, leading to a larger bias (Figure 4A). However, if the

prior is uniform, the density of optic flow would merely affect sub-

jects’ uncertaintyabout their speedswhile the instantaneousoptic

flow estimates themselves would still be unbiased under both

conditions.The leaky integratormodel thuspredicts that changing

the texture density would leave position bias unaffected.

The performance of an example subject is shown in Figure 4B.

Sparsifying optic flow had a detrimental effect on behavior as

indicated by a steeper relationship between true and perceived

distance moved as well as angle rotated. As before, we quanti-

fied the bias as the slope of this regression and found similar

effects across subjects (Figures 4C and S4A). Consistent with

the prediction of the slow-speed prior model, decreasing the

density led to a significantly greater bias both in distance moved

(mean ± SEM radial bias,Gr , high density, 1:27±0:1; low density,

1:46±0:1; p = 2.53 10�2; paired t test) and in angle rotated

(mean angular bias, Gq, high density, 1:58±0:1; low density,

2:13±0:1; p = 9.1 3 10�4).

In a second manipulation, we imposed two different speed

limits (‘‘slow’’ and ‘‘fast’’) on different trials, which we imple-

mented by randomly switching the gain by which the joystick

controlled velocity. To avoid inducing different effects on biases

in distance and angle, both linear and angular velocities were

scaled by the same gain factor (STAR Methods). Because the

leaky integrator model incorporates a uniform prior, subjects’

estimates of speeds will always be unbiased in this model.
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Figure 4. Test of Model Predictions

(A) Reliability of optic flowwasmanipulated by altering the density of ground-plane elements. Decreasing the density will increase subjects’ bias only if they have a

slow-speed prior.

(B) Scatterplots showing the effect of density on radial and angular bias of one subject. Dashed line represents unity slope (unbiased performance), and solid lines

represent slopes of regression fits. Trials are colored according to density: red, high-density trials; blue, low-density trials.

(C) Effect of density manipulation on radial (left) and angular (right) biases of individual subjects. Asterisks denote significant difference betweenmeans (see text).

(D) Subjects’ speed limit wasmanipulated by altering the gain of the joystick. The leaky integrator model predicts that subjects’ biases will be reduced in the high-

speed condition.

(E) Scatterplots showing the effect of speed on distance and angle bias of one subject. Trials are colored according to speed: red, high-speed trials; blue, low-

speed trials.

(F) Speed manipulation does not affect subjects’ biases in a systematic way. n.s., not significant (see text).

See also Figure S4.
However, a fundamental feature of this model is that the integra-

tion error accumulates over time, so lowering the speed limit

should lead to a larger positional bias due to increased travel

time (Figure 4D). On the other hand, for a Gaussian likelihood

whose variance scales linearly with speed, an exponential

slow-speed prior predicts that the velocity would be underesti-

mated by the same multiplicative factor at all velocities. There-

fore, the slow-speed priormodel predicts that subjects will accu-

rately perceive the relative change in their speeds and thus be

biased to the same extent under both conditions. Note that

this latter prediction strictly holds only for model parametriza-

tions that produce a multiplicative bias in velocity estimates

and may not be applicable to alternative formulations of the
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model. However, the prediction of the leaky integrator model’s

speed dependence does not depend on the form of the velocity

likelihood and can therefore be unambiguously tested.

We analyzed subjects’ biases and found that their perfor-

mance was, on average, unaffected by the speed manipulation

(Figures 4E, 4F, and S4B) both for distance (Gr , high speed,

1:33±0:1; low speed, 1:38±0:1; p = 0.59, paired t test) and angle

(Gq, high speed, 1:92±0:1; low speed, 1:72±0:1; p = 0.15). This

result is consistent with our preliminary observation of a velocity-

independent distance bias (Figure S1C). This once again argues

against the leaky-integrator model and favors, in particular, a

slow-speed prior model that can induce multiplicative biases in

velocity estimates.



Distance-Dependent Bias Reversal
Because subjects compute their position by integrating noisy ve-

locity estimates, their position estimates are uncertain. When

traveling modest distances, such as those tested in the above

experiments, the integrated uncertainty in position is relatively

small. Although we took this uncertainty into account, we could

qualitatively explain overshooting solely in terms of a bias in the

subject’s mean position estimates resulting from integrating

biased velocity estimates. In this section, we show that, when

path integrating over larger distances, the influence of position

uncertainty can produce a reversal in the pattern of bias—from

overshooting to undershooting—and we provide experimental

evidence for this phenomenon.

Recall that the proposed framework assumes that subjects

incorporate their knowledge of position uncertainty by tracking

the expected reward of stopping at a given location. When this

expected reward reaches its maximum, they stop moving. At

any given moment during the trial, the expected reward is given

by the overlap of the probability distribution over their position

with the target. Let us examine how it should change as a func-

tion of their position by considering uniformmotion in one dimen-

sion for clarity. Subjects integrate both the mean (signal) and

random fluctuations (‘‘noise’’) in their velocity estimates. If inte-

gration is leak free, then their uncertainty in position would grad-

ually keep building up over time (STAR Methods; Equation 4).

The rate at which position uncertainty builds up depends on

the nature of sensory noise (independent or temporally corre-

lated) as well as ability to represent and integrate large uncer-

tainties. In principle, drift-diffusion models can be used to model

noisy integration (Simen et al., 2011; Thurley, 2016). However,

constructing suchmechanisticmodels would entail making unin-

formed assumptions about the noise process. Here, rather than

positing a particular mechanism, we choose a phenomenolog-

ical model for position uncertainty, assuming that the standard

deviation s of the position distribution grows as a power-law

function of time t, as sðtÞftl. For uniform motion, this can also

be expressed as a distance-dependent scaling of the width

with the same power-law exponent so that sðrÞfrl for distance

r (Figure 5A). A scaling exponent of l= 0:5 (Wiener process)

would result from integrating velocity estimates with indepen-

dent Gaussian noise. Other types of noise may yield smaller

(sub-diffusion) or larger (super-diffusion) exponents, depending

on whether variance in the position estimate ðs2Þ scales faster

or slower than the mean.

We analyzed how the expected reward should qualitatively

depend on distance for a range of exponents. Intuitively, one

would expect it to be greatest when the probability distribution

over position is centered on the target. However, this is not

always true. Figure 5B shows how the expected reward

evolves with distance for near and far targets for one example

case ðl = 1:5Þ. When steering to nearby targets, the built up un-

certainty is relatively small, so the expected reward is indeed

greatest when the mean of the distribution over distance moved

roughly matches the target distance. For faraway targets, how-

ever, the expected reward actually peaks before reaching the

target. This happens because, if the subject moves beyond

that optimal distance, the probability distribution over their posi-

tion becomes so wide that its overlap with the target begins to
decrease. Therefore, when steering toward sufficiently distant

targets, an ideal observer should stop short of the target

(Figure 5C).

The precise extent of undershooting depends on the noise

process, with larger exponents producing greater undershooting

due to a faster buildup in uncertainty (Figure 5D, top left).

Furthermore, for exponents larger than one, the tendency to un-

dershoot grows stronger with distance. Note that the degree of

undershooting does not depend on the uncertainty in estimating

the target position but rather on the change in uncertainty over

distance. Any uncertainty about the target would reduce the

magnitude of expected reward, but not the optimal distance at

which maximum reward is achieved. Thus, potentially, large

biases in path integration can stem solely from a subject hedging

their bets against increasingly uncertain position estimates—

even when those estimates are unbiased. We have already

demonstrated that velocity, and consequently the distance

moved, is likely underestimated due to a slow-speed prior (Fig-

ure 5D, bottom left). The two factors will have opposing effects

on bias, with potentially different spatial dependences: whereas

the slow-speed prior causes overshooting through a perceptual

bias that scales linearly with distance, growing uncertainty does

not alter the perceptual bias but generates an increasing

tendency for responses to undershoot. This undershooting can

increase linearly or supra-linearly depending on whether uncer-

tainty scales slower ðl< 1Þ or faster ðl> 1Þ than Weber’s law.

The combined effect of the two factors is shown in Figure 5D

(right). For sub-Weber-law scaling in uncertainty, bias will

increase linearly with distance, consistently producing either

overshooting or undershooting depending on the relative

strength of the two effects. For scaling exponents larger than

one, the different spatial scaling from the slow-speed prior and

from growing positional uncertainty leads to a rather surprising

prediction: when position uncertainty grows faster than the

mean, bias in the subjects’ responses should gradually reverse

from overshooting to undershooting when navigating to increas-

ingly distant targets.

The above prediction also holds for motion in two dimensions.

In this case, both linear and angular components of motion are

subject to the effects of growing uncertainty and may eventually

lead to undershooting both in radial as well as angular re-

sponses. To test whether there is such a bias reversal, we con-

ducted an additional experiment in which we asked subjects to

steer to targets that were much further away. Target locations

were discretized, and their distances were varied on a logarith-

mic scale (STAR Methods). Because the limited viewing angle

in our setup restricted the angular eccentricity of the targets,

we did not test for bias reversal in the angular domain. Similar

to our original experiment, subjects continued to exhibit a signif-

icant angular bias (Gq = 2:32±0:6; p = 1.6 3 10�4; t test; Fig-

ure S5A), turning much more than required.

On the other hand, the pattern of radial bias was strikingly

consistent with our prediction. Figure 5E shows how the radial

distance of an example subject scaled with target distance in

this task. The subject exhibited overshooting in trials with nearby

targets (2, 4, 8, and 16 m), as was observed in the original task,

but this pattern of bias was replaced by significant under-

shooting for the farthest targets (32 m). Note that, when steering
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Figure 5. Model Explains Bias Reversal with Distance

(A) The width of the subjects’ probability distribution over their position (black) is modeled as a power law with exponent l. The overlap (gray shade) of the

probability distribution with the target (orange) corresponds to the subjects’ expected reward.

(B) Evolution of subjects’ expected reward when steering to a nearby (left) and distant (right) target for and proportionality constant equal to one. Insets show

probability distributions over position at three different locations indicated by solid circles of the corresponding color on the reward curve. The peaks of the reward

curves correspond to the optimal response distance. Orange bars denote the width of the target and dashed vertical lines the target center.

(C) The optimal response distance as a function of target distance for the above case.

(D) The effect of position uncertainty (top) and the effect of slow-speed prior (bottom) combine to determine the model prediction for path integration bias, shown

for various values of the power-law exponent (right). The interaction scales the optimal response distance by the slope G of the relation between actual and

perceived distance moved.

(E) Mean net distance moved by one subject in response to targets at five different distances. Gray solid line corresponds to the best-fit model.

(F) Gray circles denote mean responses of individual subjects. Black line corresponds to the subject-averaged response.

(G) Mean response of one subject under conditions of low-density (blue) and high-density (red) optic flow. Asterisks denote a significant difference betweenmean

responses under the two conditions (2 m, p = 0.029; 4 m, p = 0.007; 32 m, p = 4.1 3 10�4; paired t test).

(H) Mean responses of individual subjects under the two conditions. Asterisks denote a significant difference between mean responses (across subjects) under

the two conditions (2 m, p = 0.035; 32 m, p = 0.013; paired t test). Solid lines correspond to subject-averaged response.

In (C)–(H), black dashed lines have unit slope; in (E) and (G), error bars denote SEM across trials. See also Figure S5.
to distant targets, the effect of the slow-speed prior would still

persist, but its effect is outweighed by that of increasing posi-

tional uncertainty. To quantify the relative strength of the two ef-

fects, we simultaneously fit amultiplicative constant G and expo-

nent l to the subject’s data (STAR Methods; Equation 5). The

multiplicative constant captures the linear effect of velocity un-

derestimation that causes overshooting, whereas the exponent

reveals the rate of scaling of uncertainty with distance that

causes undershooting to faraway targets. Both parameters

must be greater than unity in order to produce a reversal from

overshooting to undershooting. This was indeed the case for

this subject (Figure 5E, gray curve; G = 2:2; l = 2:4). A similar
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pattern of bias reversal was observed across subjects (Fig-

ure S5B; G = 1:5 ±0:2, p = 3.6 3 10�5, t test; l = 1:8±0:4,

p = 8 3 10�5) and can be noticed in the subject-averaged re-

sponses (Figure 5F). The supra-Weber-law scaling in subjects’

uncertainty can also be explicitly seen in the manner by

which SDs in response scaled with the mean distance moved

(Figure S5C).

The undershooting observed for distant targets could simply

have been due to motor fatigue. To test whether the bias was

influenced by sensory uncertainty, we re-analyzed our data by

dividing the trials into two groups based on the density of optic

flow cues. If sensory uncertainty contributes to undershooting,



decreasing the reliability of sensory cues should cause greater

undershooting. The behavior of an example subject shown in

Figure 5G confirms this assertion. When steering to the farthest

target, this subject covered significantly less distance when the

density of optic flow was reduced. Note that, for nearby targets,

the effect is reversed because the influence of the slow-speed

prior is stronger than that of position uncertainty. These effects

of density manipulation were observed across subjects (Figures

5H and S5D), suggesting that subjects’ bias is likely not due to

fatigue but rather governed by sensory uncertainty.

The bias-reversal reported here should not be confused with

an experience-based regression effect in which subjects’

responses are biased toward the mean stimulus (Jazayeri

and Shadlen, 2010; Petzschner and Glasauer, 2011). Specif-

ically, due to noise in the measurement of the target location,

subjects’ perceptual estimates of that location may be biased

toward the mean of the distribution of targets across trials; in

turn, this could manifest in path integration behavior that is

similarly biased. However, the pattern of bias shown in Figure 5

was present from the beginning of the experiment (Figure S5E),

suggesting that this bias is not likely due to effects of adapta-

tion. Furthermore, to ensure that manipulating ground-plane

density does not influence judgment of target location, we

conducted a separate experiment in which we manipulated

ground-plane density only after the target was turned off

so that it selectively affects reliability of optic flow. Once again,

we observed that bias reversal was sensitive to this manipula-

tion (Figures S5F and S5G), implying that it is induced by

the process of path integration rather than a bias in target

perception. While regression to the mean may still play a

role in this task, our results suggest that prior expectations

about self-motion velocity and uncertainty in position due to

accumulated uncertainty about optic flow have a dominant

influence.

DISCUSSION

We have presented a unified framework that combines Bayesian

inference, evidence integration, and the principle of utility maxi-

mization to explain human behavior in a naturalistic navigation

task. This framework yields a parsimonious account of bias in

visually guided path integration, in which bias stems from prior

expectations and sensory noise associated with self-motion.

Our claim is based on four primary findings. First, when navi-

gating modest distances using optic flow, humans overshoot

the goal location, implying that they underestimated both their

net translation and rotation. Second, analysis of subjects’ move-

ment trajectories using a dynamic observer model revealed that

their bias was more likely to originate from a slow-speed prior

rather than forgetful integration of self-motion. Third, experi-

mental outcomes of manipulating the reliability of self-motion

cues and speed confirmed the predictions of the slow-speed

prior model. Finally, when navigating long distances, the model

predicts a possible reversal in the direction of bias due to the

growing influence of uncertainty on the expected reward, a

phenomenon that was confirmed experimentally.

In order to study visual path integration, we used virtual reality

so that vestibular and proprioceptive inputs were no longer rele-
vant for the task. Specifically, subjects used a joystick to steer to

a cued target location based solely on optic flow. To perform

accurately on this task, participants had to determine the loca-

tion of the target, remember that location, and integrate their

own movements until they reached that location. Each of those

steps is a potential source of behavioral errors.

There are several reasons why systematic errors seen in our

data cannot be attributed to biased perception of the initial target

location. First, we used stereoscopic stimuli to generate an

immersive virtual environment with depth cues that facilitate

judgement of target distances, at least for short distances.

Second, judging target angles is more straightforward and

does not require depth cues, yet subjects exhibited a large

angular bias in the task. Notably, introducing angular landmarks

in the virtual environment abolished this angular bias. The land-

marks themselves were uninformative about target angles but

helped obviate the need to integrate angular velocity by

providing a direct estimate of the subject’s orientation in the

virtual environment. Thus the large angular biases seen in the

absence of landmarks must be related to the perception of optic

flow cues. Finally, and perhaps most importantly, manipulating

the density of the ground plane significantly altered subjects’

biases at all distance scales. This effect persisted even when

we confined the above manipulation to the period of movement,

leaving target distance estimation relatively intact. Therefore, the

behavioral bias seen in our task likely reflects error in estimating

one’s own position rather than difficulties associated with esti-

mating the target location.

Relation to Past Experiments
Past studies on visual path integration employed visually simu-

lated motion along a straight line or along predetermined curvi-

linear trajectories. In contrast, our experimental task allowed

subjects to actively steer using two degrees of freedom, allowing

for precise control of their self-motion velocity at all times, as

would be the case during natural foraging. This design wasmoti-

vated by the need to engage neural mechanisms and computa-

tions that likely underlie path integration in the real world. Yet our

results regarding biases are qualitatively similar to those of pre-

vious studies, even though those studies tested motion along a

one-dimensional hallway. Specifically, studies that tested visual

path integration over short distances found that subjects over-

shoot the target (Frenz and Lappe, 2005; McManus et al.,

2017), whereas studies that used long-range targets found the

opposite (Brossard et al., 2016; Lappe et al., 2007; Redlick

et al., 2001). A noteworthy departure from past studies was

observed in the manner by which variability of our subjects’

responses scaled with distance. Like sensory perception, odo-

metric ability has been shown to follow Weber’s law in humans

(Durgin et al., 2009; Petzschner and Glasauer, 2011) and inverte-

brates (Cheng et al., 1999, 2006). In contrast, we observed

supra-Weber-law scaling. Given that the overall magnitude of

response variability was also larger in our study, we suspect

that the use of sparse optic flow in our experiments—needed

to probe the internal model of subjects’ self-motion velocity—

underlies the above discrepancy. If this is the case, then it sug-

gests that Weber’s law might break down in the regime of high

uncertainty.
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Relation to Past Models
To explain our subjects’ behavior, we tested two different instan-

tiations of a dynamic Bayesian observer model and found that

bias in path integration appears to stem mainly from a slow-

speed prior that causes subjects to underestimate their velocity.

Unlike a prior over retinal speed (H€urlimann et al., 2002; Sotiro-

poulos et al., 2014; Stocker and Simoncelli, 2006; Weiss et al.,

2002), the prior in our Bayesian model corresponds to subjects’

prior expectation of their self-motion velocity. Nonetheless, the

latter might be inherited from low-level visual sensory priors

that govern human perception of local image velocities. Alterna-

tively, the prior over self-motion velocity could reflect the statis-

tics of sensory inputs experienced during natural self-motion,

which is known to be biased toward slower velocities (Carriot

et al., 2014). In this case, one would expect the prior to be shared

across all modalities. Our data qualitatively agree with this view

for the prior over angular velocities, because angular bias per-

sisted when estimates were based on efference copy alone,

although the variability was prohibitively large to allow for a

proper quantitative assessment (Figure S1B). Regardless of its

specific origins, this work demonstrates that sensory priors

can have tangible consequences for complex dynamic behav-

iors, such as path integration, well beyond the realm of traditional

binary decision-making tasks. Although we focused on visual

self-motion, this model is also applicable to other modalities.

Availability of additional modalities should diminish the effect

of the prior, leading to reduced bias. Such a reduction has in

fact been observed when path integrating using multimodal

cues (Bakker et al., 1999; Becker et al., 2002; Sun et al., 2004).

While the slow-speed prior can explain why subjects would

travel beyond the goal, it cannot account for undershooting

reported in previous studies that used distant goals (Brossard

et al., 2016; Lappe et al., 2007; Redlick et al., 2001). However,

analysis of our model revealed that, when path integrating over

longer distances, the effect of growing uncertainty can eventu-

ally override the effect of perceptual bias induced by prior

expectations and cause undershooting in subjects’ responses.

This is a spatial analog of a model that explains early abandon-

ment on a waiting task as a rational response to increasing

uncertainty about the next reward (McGuire and Kable, 2013).

We tested this prediction and found that the pattern of bias

changed from overshooting to undershooting when navigating

to increasingly distant targets. This phenomenon of bias-reversal

is also discernable in the results of previous visual (Brossard

et al., 2016; Lappe et al., 2007; Redlick et al., 2001) and non-vi-

sual (Bergmann et al., 2011; Lappe and Frenz, 2009) path inte-

gration studies. Traditional leaky integration models cannot

explain why subjects would undershoot. To account for under-

shooting, such models have had to be modified to update dis-

tance to target rather than distance moved (Frenz and Lappe,

2005). However, such a change of variable neither explains

why subjects overshoot to relatively nearby goals nor why the

degree of undershooting is sensitive to the reliability of optic

flow. Here, we show that a distance-dependent reversal in the

response bias naturally emerges when performing probabilistic

inference over position under the influence of a slow-speed prior

to maximize expected reward. Although velocity estimates are

more reliable at smaller speeds, moving slowly would entail inte-
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grating over longer times, and consequently, subjects would not

benefit from such a strategy (Figure 4F). In fact, longer integra-

tion times would result in an even greater accumulated uncer-

tainty due to the supra-Weber-law scaling effect (Figure S5C).

Perhaps this explains why subjects tended to travel close to

the speed limit in our task (Figure S1C).

Recent models based on iterative Bayesian estimation sug-

gest that subjects may exploit trial history to update an explicit

prior over net distances and angles turned (Petzschner and

Glasauer, 2011; Prsa et al., 2015).While suchmodels can explain

responses that exhibit a regression toward the mean of previ-

ously experienced stimuli, they cannot account for the unidirec-

tional response bias observed in many studies, including our

own (Figure 1E). Moreover, such models have limited potential

for explaining systematic biases seen in the first few trials of

the experiment when the subjects have not yet accurately

learned the environmental statistics.

Othermodels attribute bias inpath integration primarily to either

a path-dependent (Bergmann et al., 2011; Brossard et al., 2016;

Lappe et al., 2007, 2011) or temporal (Mittelstaedt and Glasauer,

1991; Mittelstaedt and Mittelstaedt, 2001; Vickerstaff and Di

Paolo, 2005) decay in integrating self-motion. However, leaky

integration cannot explain the effect of reliability of optic flow

cues reported here. Moreover, it is worth noting that, in addition

to the leak factor, a recentmodel of leaky-integration incorporated

a gain factor that rescaled subjects’ displacement in each step.

The best-fit gain factors were generally less than unity (Bergmann

et al., 2011; Brossard et al., 2016; Lappe et al., 2007, 2011), which

essentially amounts to velocity underestimation. Coupled with

small leak rates (�0.01–0.02m�1) found in those studies, it is clear

that theperformanceof thatmodel for short-range targets is in fact

dominated by velocity underestimation.

Although the precise neural circuit underlying path integration

has not been worked out, there is physiological evidence for

near-perfect integration of visual motion cues by neurons in ma-

caques (Huk and Shadlen, 2005; Kiani et al., 2008), suggesting

that our model is neurally plausible. Our work is also supported

by recent studies showing lossless evidence accumulation of

temporally disjoint sensory inputs in rats (Brunton et al., 2013;

Raposo et al., 2014), humans (Brunton et al., 2013; Kiani et al.,

2013), and monkeys (Huk and Shadlen, 2005; Kiani et al., 2008)

performing binary decision tasks. Subjects may benefit from

imperfect integration when the statistical structure of sensory in-

puts is unpredictable (Carland et al., 2016; Glaze et al., 2015) or

when signal strength fluctuates wildly (Ossmy et al., 2013; Veliz-

Cuba et al., 2016). However, when sensory dynamics are known

a priori or are predictable from physical laws, it makes sense that

behavior is limited by sensory inputs rather than leaky integra-

tion. One limitation of this work is that it is based solely on the

principle of probabilistic perceptual inference and ignores the

costs incurred in performing actions. Because navigation is

effortful, future extensions should test whether the subjects

also optimize their actions at finer timescales to minimize the

total cost during goal-oriented navigation.

Toward Understanding the Neural Basis
Disentangling the neural representation of sensory inputs from in-

ternal beliefs is notoriously difficult. Binary decision tasks and



other paradigms measuring discrete responses are ill suited for

this purpose, as behavioral readouts are often sparse in time

and may conflate belief states and actions. The task and the

modelingapproachused in this studyoffer an ideal setting toover-

come such limitations to investigate ‘‘dynamic belief state repre-

sentations’’ (Leeet al., 2014) in awidelystudiedneural circuit. Spe-

cifically, theoreticalmodels suggest thatgridcellsmaybe involved

in path integration (Burak and Fiete, 2009; Giocomo et al., 2011),

yet experimental evidence remains indirect (Chen et al., 2015; Gil

et al., 2018) and controversial (Bjerknes et al., 2018). By properly

modeling the beliefs of animals trained to path integrate, one can

distinguish the spatiotemporal dynamics of their belief states

fromactual states (e.g., Figure 3A, left) and then look for the neural

correlates of those states in the grid cell network.

Beyond characterizing neural representations, the approach

outlined here would also allow one to directly test the optimality

of the underlying neural computations. For instance, brain areas

encoding self-motion velocity have recently been identified in ro-

dents (Kropff et al., 2015;Whitlock et al., 2012;Wilber et al., 2017)

and primates (Avila et al., 2017). By simultaneously recording the

activity of areas representing velocity and internal estimates of

position, one can testwhether brain-wideneural circuits canopti-

mally integrate dynamic, non-stationary sensory inputs, which

would help unravel how the brain works in the real world.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Open Graphics Library (OpenGL) Khronos Group https://www.opengl.org/

Custom-built analysis code MATLAB https://www.mathworks.com/

Other

M20U9T-N82 USB joystick CTI Electronics http://www.ctielectronics.com/

Kodak Wratten 2 optical filters – #29 and #61 Kodak https://www.kodak.com/

Power 1401 MkII data acquisition system and Spike2 software Cambridge Electronic Design Ltd. http://ced.co.uk/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kaushik

Lakshminarasimhan (jklakshm@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nineteen human subjects (Nine Male, Ten Female; all adults in the age group 18-32) participated in the experiments. With the

exception of subjects s4 and s5 (Figures S1–S5), all subjects were unaware of the purpose of the study. Experiments were first per-

formed in the above two subjects before testing others. All experimental procedures were approved by the Institutional ReviewBoard

at Baylor College of Medicine and all subjects signed an approved consent form.

METHOD DETAILS

Behavioral Task
Subjects used an analog joystick with two degrees of freedom and a circular displacement boundary to control their linear and

angular speeds in a virtual environment. This virtual world comprised a ground plane whose textural elements had limited lifetime

ð� 250msÞ to avoid serving as landmarks. The ground plane was circular with a radius of 70 m (near and far clipping planes at

5cm and 4000cm respectively), with the subject positioned at its center at the beginning of each trial. Each texture element was

an isosceles triangle (base3 height: 8.53 18.5 cm) that was randomly repositioned and reoriented at the end of its lifetime, making

it impossible to use as a landmark. The stimulus was rendered as a red-green anaglyph and projected onto a large rectangular screen

(width 3 height: 149 3 127 cm) positioned 67.5cm in front of the subject’s eyes. Subjects wore goggles fitted with Kodak Wratten

filters (red #29 and green #61) to view the stimulus. The binocular crosstalk for the green and red channels was 1.7% and 2.3%

respectively. Subjects pressed a button on the joystick to initiate each trial, and the task was to steer to a random target location

that was cued briefly at the beginning of the trial (Figure 1A). The target, a circle of radius 20cm whose luminance was matched

to the texture elements, blinked at 5Hz and appeared at a random location between q= ±42:5� of visual angle at a distance

of r = 0:7� 6m relative to where the subject was stationed at the beginning of the trial. After one second, the target disappeared,

which was a cue for the subject to start steering, and the joystick controller was activated.

Of the nineteen subjects, seven subjects performed a total of 2000 trials equally spread across eight sessions. Prior to the first

session, all subjects were asked to perform around ten practice trials in which they steered to a visible target to familiarize themselves

with joystick movements and the task structure. In four of the sessions (two of which contained angular landmarks in the form of a

panoramic mountainous background), the maximum linear and angular speeds were fixed to vmax = 2ms�1 and umax = 90�=s respec-
tively, with the floor density also held constant at r = 2:5 elements=m2. In the remaining four sessions, trials with two different

speed limits (vmax = 2ms�1 and umax = 90�=s; vmax = 4ms�1 and umax = 180�=s) and two floor densities (r= 0:1 elements=m2 and

r = 2:5 elements=m2) were randomly interleaved. Six of the seven subjects participated in two additional experimental sessions

(250 trials each). The first of these additional experiments was similar to the original experiment except that half the trials contained

no optic flow cues, so subjects had to steer in complete darkness. In the second additional experiment, as before, subjects pressed a

button on the joystick to initiate each trial. Targets appeared briefly at random locations sampled from a distribution identical to the

original experiment. However, rather than actively steering to the target, they were passively transported along trajectories that took

them through the target at one of two possible linear speeds (n= 2ms�1 or 4ms�1). Since trajectories necessarily passed through the
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target and the velocity was held constant throughout the trial, the angular velocity on each trial was constrained by the location of the

target. Subjects were instructed to press the button when they believed they had reached the target. Therefore, in this experiment,

subjects used the joystick only to initiate trials and register their responses.

Furthermore, six subjects (five of whom did not participate in any of the above studies) were tested on an extended version of the

original task wherein the targets were presented at distances of up to 32 m. Due to the longer range of distances used in this version,

the target radius was increased from 20cm to 75cm to ensure clear visibility. As before, subjects had to steer to a target location that

was cued briefly for a period of 1 s at the beginning of the trial. However in this experiment, target locations were discretized to five

possible distances ðr = [2, 4, 8, 16, 32] m) and five possible angular eccentricities (q = [0�, ± 15�, ± 30�]) resulting in a total of 25

unique target locations. Subjects performed ten randomized repetitions of each location yielding a total of 250 trials. Trials with

two different floor densities (r= 0:1 elements=m2 and r = 2:5 elements=m2) were randomly interleaved. Finally, seven more subjects

(none of whomparticipated in any of the above studies) performed a slight variation of this extended task in whichwemanipulated the

density only after the target was turned off. This ensured that the manipulation selectively affected the reliability of optic flow, but not

the perception of target positions.

Stimulus and Data acquisition
All stimuli were generated and rendered using C++OpenGraphics Library (OpenGL) by continuously repositioning the camera based

on joystick inputs to update the visual scene at 60 Hz. The camera was positioned at a height of 1 m above the ground plane. Spike2

software (Cambridge Electronic Design Ltd.) was used to record and store the subject’s linear and angular velocities, target locations,

and all event markers for offline analysis at a sampling rate of Hz.

Dynamic Bayesian observer model
To account for the pattern of behavioral results, we considered an observer model comprised of a Bayesian estimator that used noisy

measurements mn and mu to decode linear and angular self-motion velocities n and u, which were then temporally integrated to

dynamically update the subject’s position. We parameterized the model by making the following three assumptions: First, we chose

an exponential function to describe the priors over both linear and angular velocities: pðnÞ= eanjn j and pðuÞ = eauju j . Second, likeli-
hood functions pðmnjnÞ and pðmujuÞwere assumed to be Gaussian, centered around the respective measurementsmn andmu, with

variances proportional to the magnitude of the measurement: VarðmnÞ=bnjmn j and VarðmuÞ = bujmu j . Under these conditions, it

can be shown that the means and variances of the maximum a posteriori estimates bn and bu are given by (Stocker and Simon-

celli, 2006):

E
�bn jmn

�
= bn mn; E

�bujmu

�
= bumu (Equation 1 .1)
Var
�bnjmn

�
zb2

n VarðmnÞ; Var
�bujmu

�
zb2

u VarðmuÞ; (Equation 1 .2)

where bn = 1+ anbn and bu = 1+ aubu have a straight-forward interpretation in the form of multiplicative biases in the subjects’ esti-

mates of their linear and angular speeds respectively. Note that a flat prior corresponds to an exponent of zero yielding an unbiased

estimate, while negative/positive values of the exponents would result in under/overestimation of the speeds. The final assumption

pertains to the nature of the integrator that computes position from speed. We assume that the integration process is governed by

two independent leak time constants td and t4 that specify the timescales of integration of estimated linear and angular speeds to

compute distance d and heading 4 respectively:

_d = � dðtÞ=td + bnðtÞ; _4= � 4ðtÞ�t4 + buðtÞ: (Equation 2 .1)

Themean distance and heading at each time point can be determined by convolving themean velocity estimates with an exponential

kernel: E½ bdðtÞ�= e�t=td+E½bnðtÞ� and E½b4ðtÞ�= e�t=t4+E½buðtÞ� where the expectations are taken over the corresponding posterior

probability distributions. Likewise, if noise in the velocity measurements is temporally uncorrelated, the variance of the distance

and heading estimates can be expressed in terms of the variances of the velocity estimates as: Var½ bdðtÞ�= e�t=td+Var½bnðtÞ� and
Var½b4ðtÞ� = e�t=t4+Var½buðtÞ�. Thus, in this case, both mean and variance of the integrated estimates will share the same temporal

dynamics. Note that the mean estimates E½ bdðtÞ� and E½b4ðtÞ� will be accurate in the limit of large time constants (perfect integration),

but are misestimated if the time constants are comparable to travel time, T. Since the time course of distance and heading together

determine position, it follows that the subjects’ mean estimates of their linear and angular coordinates (br and bq) will also be different

from their actual values (r and q) when tzT.

We also analyzed a variation of the leaky integration model in which the leak was implemented using space constants pd and p4

according to:

_d = � bnðtÞdðtÞ=pd + bnðtÞ; _4= � buðtÞ4ðtÞ�p4 + buðtÞ: (Equation 2 .2)
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Note that unlike the temporal leak model in Equation 2.1, this model only integrates when velocity is non-zero. Therefore, position is

only updated during movement resulting in estimates that are robust in time. This version of the leaky-integrator model was used for

Figure S3E.

Model fitting
In order to determine the key factor underlying subjects’ biases, we fit two different variants of the model: (i) A ‘slow-speed prior

model’ ðM1Þ in which the integration was assumed to be perfect ðtd = t4 =NÞ and (ii) a ‘leaky integration model’ ðM2Þwhere the prior

was held flat ðan = au = 0Þ. These models represent the two extreme scenarios in which bias in path integration is attributed

exclusively to speed misperception and forgetful evidence accumulation, respectively. The models both had four parameters

each: width parameters (bn and bu) of the two likelihood functions to represent how fast the respective widths scale with the

magnitude of linear and angular velocity measurements, in addition to either two exponents (an and au) to represent priors in M1

or two time constants (td and t4) to represent the degree of leak in M2. Since subjects’ position estimates are probabilistic, we

fit model parameters j by taking both mean and uncertainty of position into account; this was done by maximizing the expected

reward, which is essentially the probability that the subjects believed themselves to be within the target at the end of each trial:

LM = arg max
j

YN

i = 1

Z N

�N

P
�
xðiÞj _xðiÞ

1;.;T

�
1QðxÞdx; (Equation 3)

where x is a vector that denotes position on the horizontal plane, PðxðiÞj _xðiÞ1;.;T Þ is the probability distribution over the subject’s stop-

ping position on the ith trial conditioned on the path taken in that trial, T is the duration of that trial, 1QðxÞ is the indicator function which

is equal to 1 for all values of x that fall within the target Q and zero everywhere else, LM denotes the likelihood of modelM with the

best-fit parameters, and model parameters jHfan; au;bn;bug and fbn;bu; td; t4g for M1 and M2 respectively. We fit two more

models in addition to the above: a ‘null’modelM0 that had only two free parameters – jHfbn;bug – essentially attributing the biases

in subjects’ position estimates entirely to random variability in their self-motion speed estimates, and a ‘full’modelM12 in which all six

model parameters were free such that jHfan;au;bn;bu;td;t4g.
In addition to the above parametrization, we fit both the slow-speed and leaky-integrator models using three alternative parame-

trizations constructed by changing either the form of the prior, the form of the likelihood function, or both: ðiÞ Gaussian prior and

Gaussian likelihood, ðiiÞ Exponential prior and log-normal likelihood, and ðiiiÞ Gaussian prior and log-normal likelihood. Each of

the above parametrizations also had four free parameters (Figure S3F). Maximum a posteriori estimates bn and bu were computed

numerically.

Modeling position uncertainty
Since position is estimated by integrating velocity, uncertainty in velocity estimates will accumulate over time, leading to growing

uncertainty in position estimates. If integration is leaky, noise will only accumulate over the time constant of integration, causing

position uncertainty to eventually asymptote to a fixed value. However, if the integration is perfect, noise will accumulate perpetually

leading to uncertainty that grows with time. Let rðTÞ denote the subject’s one-dimensional position estimate at time T. If nðtÞ denotes
subject’s instantaneous velocity estimate, we have:

rðTÞ=
Z T

0

nðtÞdt +
Z T

0

hðtÞdt; (Equation 4)

where hðtÞ represents a noise in the velocity estimate and the integral of this noise corresponds to a random walk. If noise has zero

mean, the subject’s mean position estimate hrðTÞi is not affected. However, the noise variance of position estimate s2 = hðdrÞ2i will

grow with time. For integration of temporally uncorrelated noise, the variance of position uncertainty is proportional to time T. We

postulate that uncertainty in position, dr, will be proportional to Tl for some exponent l. Large exponents may occur due to temporal

correlations, or computational constraints within the system. For the case of uniform motion, nðtÞ = n, the mean position estimate is

hrðTÞi = hR T
0 ndti = nT. Since mean position then scales linearly with time, position uncertainty can be expressed in terms of position

as sðrÞ= krl for some proportionality constant k.

Fitting distance-dependent bias reversal
To simultaneously quantify the effects of position bias (due to velocity underestimation) and position uncertainty leading to a

distance-dependent bias-reversal, we modeled the subject’s radial distance response as:

br i =G arg max
ri

ZN
�N

Pðrijk;gÞ1QðrÞdr; (Equation 5)
Neuron 99, 194–206.e1–e5, July 11, 2018 e3



where br i is the model estimated radial distance on the ith trial, Pðrijk; lÞ � N ðri; krli Þ is the modeled probability distribution over the

subject’s position, 1QðrÞ is the indicator function which is equal to 1 for all values of r within the target Q and zero otherwise, and

G is a multiplicative constant that captures multiplicative bias in the subject’s mean position estimate. If the mean position is under-

estimated, the multiplicative bias should be greater than unity because the subject would respond by overshooting. The integral on

the right-hand side represents the subject’s belief that he/she is on target, and captures the effect of position uncertainty, whereas

themultiplicative constant captures the bias in mean position induced by prior expectations of self-motion velocity. For each subject,

we fit the model parameters G, l, and k by minimizing the squared-error between the radial distance of the model and the subject’s

actual response across trials according to arg min
G;l;k

PN
i =1ðbr i � riÞ2 where N is the total number of trials.

QUANTIFICATION AND STATISTICAL ANALYSIS

Customized MATLAB code was written to analyze data and to fit models. Depending on the quantity estimated, we report statistical

dispersions either using 95% confidence interval, standard deviation, or standard error in the mean. The specific dispersion measure

is identified in the portion of the text accompanying the estimates. For error bars in figures, we provide this information in the caption

of the corresponding figure. We report exact p-values for all statistical tests, and describe the outcome as significant if p< 0:05.

Model parameters were optimized using MATLAB’s fmincon function by constraining time constants and likelihood widths to be

non-negative.

Estimation of Bias
Behavioral error on each trial was quantified by computing the difference between the subject’s response position and the corre-

sponding target position to yield an error vector e!. Error magnitudes were computed as the Euclidean norm of the error vectors,

and were convolved with a two-dimensional isotropic Gaussian kernel gðx; yÞ with width 50cm to yield smoothed error magnitudes

esðx0; y0Þ=
P

x;ygðx � x0; y � y0Þeðx; yÞ for visualization in Figure 1D. To visualize spatial distribution of errors for the two models (Fig-

ure 3C), we replaced subject’s response position by the position estimates generated by the models. We regressed each subject’s

response positions ð~r; ~qÞ against target positions ðr; qÞ separately for the radial (~r versus r) and angular (~q versus q) co-ordinates, and

the radial and angular multiplicative biases (Gr and Gq) were quantified as the slope of the respective regressions (Figure 1E). Quan-

tifying the biases in this polar representation of the positions allowed us to qualitatively relate them to perceptual biases in linear and

angular speeds — quantities that the subjects controlled using the joystick. For each subject, we estimated the 95% confidence in-

terval in the biases by bootstrapping (Figure 1F). We used a one-sample t test to determine whether the mean multiplicative bias

across subjects was significantly greater than unity (n = 7).

Model comparison and validation
For each subject, we estimated the likelihoods of all four models – the slow-speed prior model ðL1Þ, leaky integration model ðL2Þ, the
null model ðL0Þ and the full model L12ð Þ – by fitting the correspondingmodel parameters to the subject’s response trajectories from all

trials as explained in the ‘Model fitting’ section. We compared relative goodness of models by estimating the ratio of their likelihoods.

For each subject, we estimate confidence intervals for these likelihood ratios by bootstrapping (Figure 3A). Additionally, for each trial,

we generated the subjects’ believed trajectories implied by the best-fit parameters for both models (Figure 3B). We then computed

the ‘‘residual bias’’ for both models by regressing the final position estimates corresponding to the resulting trajectories against the

target positions both for linear and angular co-ordinates. Prior to doing the regression, we used a 4-fold cross-validation procedure in

which we fit both models to 75% of the trials at a time (training set) and generated model estimates for the remaining trials (test set)

using the learnedmodel parameters, to avoid overfitting.We repeated this procedure four times so that each trial was allocated to the

test set exactly once.We then quantified the residual bias by performing linear regression on the pooledmodel estimates from all four

non-overlapping test datasets (Figure 3E). For eachmodel, we used a one-sample t test to determine whether its residual bias across

subjects was greater than unity (n = 7).

Test of model predictions
Fitting and comparison of the two models described above was done using behavioral data collected during the sessions when the

ground plane density ðrÞ and speed limits (nmax andumax) were held fixed. Themodelsmake distinct predictions for howbiaswould be

affected by the latter quantities, so wemanipulated both of those quantities in a separate experiment (as explained in the ‘Behavioral

task’ section) and tested the model predictions. For each subject, we performed linear regression and quantified bias as the regres-

sion slope. For estimating the effect of density manipulation, we collapsed trials across both speeds (Figures 4B and 4C). Similarly,

the effect of speed manipulation was analyzed by combining trials from the two densities (Figures 4E and 4F). We used paired t tests

to determine whether manipulating density (and speed) significantly altered bias across subjects (n = 7).
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Quantifying bias-reversal
To quantify reversal of bias with distance (Figure 5F), we used each subject’s final response distance to fit the phenomenological

model in Equation 5. We then used one-sided t tests to test whether the distribution of the best-fit multiplicative constants ðGÞ
and power-law exponents ðlÞ across subjects were, respectively, greater than and less than one. Additionally, we used paired t tests

to test whether decreasing the density of optic flow significantly increased (decreased) the mean response distance of the subjects

for the closest (farthest) target condition (Figure 5H legend).

DATA AND SOFTWARE AVAILABILITY

The datasets generated in this study and code to analyze them are available from the Lead Contact on request.
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