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Abstract
Training recurrent neural networks (RNNs) is
a hard problem due to degeneracies in the op-
timization landscape, a problem also known as
the vanishing/exploding gradients problem. Short
of designing new RNN architectures, various
methods for dealing with this problem that have
been previously proposed usually boil down to
orthogonalization of the recurrent dynamics, ei-
ther at initialization or during the entire train-
ing period. The basic motivation behind these
methods is that orthogonal transformations are
isometries of the Euclidean space, hence they
preserve (Euclidean) norms and effectively deal
with the vanishing/exploding gradients problem.
However, this idea ignores the crucial effects of
non-linearity and noise. In the presence of a non-
linearity, orthogonal transformations no longer
preserve norms, suggesting that alternative trans-
formations might be better suited to non-linear
networks. Moreover, in the presence of noise,
norm preservation itself ceases to be the ideal
objective. A more sensible objective is maximiz-
ing the signal-to-noise ratio (SNR) of the propa-
gated signal instead. Previous work has shown
that in the linear case, recurrent networks that
maximize the SNR display strongly non-normal
dynamics and orthogonal networks are highly sub-
optimal by this measure. Motivated by this find-
ing, in this paper, we investigate the potential of
non-normal RNNs, i.e. RNNs with a non-normal
recurrent connectivity matrix, in sequential pro-
cessing tasks. Our experimental results show
that non-normal RNNs significantly outperform
their orthogonal counterparts in a diverse range of
benchmarks. We also find evidence for increased
non-normality and hidden chain-like feedforward
structures in trained RNNs initialized with orthog-
onal recurrent connectivity matrices.

1New York University 2Rice University 3Baylor College of
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1. Introduction
Modeling long-term dependencies with recurrent neural
networks (RNNs) is a hard problem due to degeneracies
inherent in the optimization landscapes of these models, a
problem also known as the vanishing/exploding gradients
problem (Hochreiter, 1991; Bengio et al., 1994). One ap-
proach to addressing this problem has been designing new
RNN architectures that are less prone to such difficulties,
hence are better able to capture long-term dependencies
in sequential data (Hochreiter & Schmidhuber, 1997; Cho
et al., 2014; Chang et al., 2017; Bai et al., 2018). An al-
ternative approach is to stick with the basic vanilla RNN
architecture instead, but to constrain its dynamics in some
way so as to eliminate or reduce the degeneracies that other-
wise afflict the optimization landscape. Previous proposals
belonging to this second category generally boil down to
orthogonalization of the recurrent dynamics, either at initial-
ization or during the entire training period (Le et al., 2015;
Arjovsky et al., 2016; Wisdom et al., 2016). The basic idea
behind these methods is that orthogonal transformations
are isometries of the Euclidean space, hence they preserve
distances and norms, which enables them to deal effectively
with the vanishing/exploding gradients problem.

However, this idea ignores the crucial effects of non-
linearity and noise. Orthogonal transformations no longer
preserve distances and norms in the presence of a non-
linearity, suggesting that alternative transformations might
be better suited to non-linear networks. Similarly, in the
presence of noise, norm preservation itself ceases to be
the ideal objective. One must instead maximize the signal-
to-noise ratio (SNR) of the propagated signal. In neural
networks, noise comes in both through the stochasticity of
the stochastic gradient descent (SGD) algorithm and some-
times also through direct noise injection for regularization
purposes, as in dropout. Previous work has shown that even
in the linear case, recurrent networks that maximize the
SNR display strongly non-normal dynamics and orthogonal
networks are highly suboptimal by this measure (Ganguli
et al., 2008). Motivated by these observations, in this pa-
per, we investigate the potential of non-normal RNNs, i.e.
RNNs with a non-normal recurrent connectivity matrix, in
sequential processing tasks. Recall that a normal matrix is
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a matrix with an orthonormal set of eigenvectors, whereas
a non-normal matrix does not have an orthonormal set of
eigenvectors. This property allows non-normal systems to
display interesting transient behaviors that are not avail-
able in normal systems. This kind of transient behavior,
specifically a particular kind of transient amplification of
the signal in certain non-normal systems, underlies their
superior memory properties (Ganguli et al., 2008), as will
be discussed further below.

Our empirical results show that non-normal vanilla RNNs
significantly outperform their orthogonal counterparts in a
diverse range of benchmarks.

2. Results
2.1. Memory in linear recurrent networks with noise

Ganguli et al. (2008) studied memory properties of linear
recurrent networks injected with a scalar temporal signal st,
and noise zt:

ht = Wht−1 + vst + zt (1)

The noise is assumed to be iid with zt ∼ N (0, I). Gan-
guli, et al. (2008) then analyzed the Fisher memory matrix
(FMM) of this system, defined as:

Jkl(s≤t) =

〈
− ∂2

∂st−k∂st−l
log p(ht|s≤t)

〉
p(ht|s≤t)

(2)

For linear networks with Gaussian noise, it is easy to show
that Jkl(s≤t) is, in fact, independent of the past signal his-
tory s≤t. Ganguli et al. (2008) specifically analyzed the
diagonal of the FMM: J(k) ≡ Jkk, which can be written
explicitly as:

J(k) = v>Wk>C−1Wkv (3)

where C =
∑∞

k=0 W
kWk> is the noise covariance matrix,

and the norm of Wkv can be roughly thought of as repre-
senting the signal strength. The total Fisher memory is the
sum of J(k) over all past time steps k:

Jtot =

∞∑
k=0

J(k) (4)

Intuitively, J(k) measures the information contained in the
current state of the system, ht, about a signal that entered
the system k time steps ago, st−k. Jtot is then a measure
of the total information contained in the current state of the
system about the entire past signal history, s≤t.

The main result in Ganguli et al. (2008) shows that Jtot = 1
for all normal matrices W (including all orthogonal matri-
ces), whereas in general Jtot ≤ N , where N is the network

size. Remarkably, the memory upper bound can be achieved
by certain highly non-normal systems and several examples
are explicitly given in Ganguli et al. (2008). Two of those ex-
amples are illustrated in Figure 1a (right): a uni-directional
“chain” network and a chain network with feedback. In
the chain network, the recurrent connectivity is given by
Wij = αδj,i−1 and in the chain with feedback network, it is
given by Wij = αδj,i−1 + βδj,i+1, where α and β are the
feedforward and feedback connection weights, respectively,
and δ is the Kronecker delta function. In addition, in order
to achieve optimal memory, the signal must be fed at the
source neuron in these networks, i.e. v = [1, 0, 0, . . . , 0]>.

Figure 1b compares the Fisher memory curves, J(k), of
these non-normal networks with the Fisher memory curves
of two example normal networks, namely recurrent net-
works with identity or random orthogonal connectivity ma-
trices. The two non-normal networks have extensive mem-
ory capacity, i.e. Jtot ∼ O(N), whereas for the normal
examples, Jtot = 1. The crucial property that enables
extensive memory in non-normal networks is transient am-
plification: after the signal enters the network, it is amplified
supralinearly for a time of length O(N) before it eventually
dies out (Figure 1c). This kind of transient amplification is
not possible in normal networks.

2.2. A toy non-linear example: Non-linearity and noise
induce similar effects

The preceding analysis, due to Ganguli et al. (2008), is exact
in linear networks. Analysis becomes more difficult in the
presence of a non-linearity. However, we now demonstrate
that the non-normal networks shown in Figure 1a have ad-
vantages that extend beyond the linear case. The advantages
in the non-linear case are due to reduced interference in
these non-normal networks between signals entering the net-
work at different time points in the past. To demonstrate this,
we will ignore the effect of noise and consider the effect of
non-linearity on the linear decodability of past signals from
the current network activity. We thus consider deterministic
non-linear networks of the form:

ht = f(Wht−1 + vst) (5)

and ask how well we can linearly decode a signal that en-
tered the network k time steps ago, st−k, from the current
activity of the network, ht. Figure 2c compares the decod-
ing performance in a non-linear orthogonal network with
the decoding performance in the non-linear chain network.
Just as in the linear case with noise (Figure 2b), the chain
network outperforms the orthogonal network.

To understand intuitively why this is the case, consider a
chain network with Wij = δj,i−1 and v = [1, 0, 0, . . . , 0]>.
In this model, the responses of the N neurons after N time
steps (at t = N ) are given by f(sN ), f(f(sN−1)), ...,
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Identity Orthogonal Chain Chain with feedback

a

b c

Normal Non-normal

Figure 1. a Schematic diagrams of different recurrent networks and the corresponding recurrent connectivity matrices (upper panel).
b Memory curves, J(k) (Equation 3), for the four recurrent networks shown in a. The non-normal networks, chain and chain with
feedback, have extensive memory capacity: Jtot ∼ O(N), whereas the normal networks, identity and random orthogonal, have Jtot = 1.
c Extensive memory is made possible in non-normal networks by transient amplification: the signal is amplified for a time of length
O(N) before it dies out, abruptly in the case of the chain network and more gradually in the case of the chain network with feedback. In
b and c, the network size is N = 100 for all four networks.

f(f(. . . f(s1) . . .)), respectively, starting from the source
neuron. Although the non-linearity f(·) makes perfect lin-
ear decoding of the past signal st−k impossible, one may
still imagine being able to decode the past signal with rea-
sonable accuracy as long as f(·) is not “too non-linear”. A
similar intuition holds for the chain network with feedback
as well, as long as the feedforward connection weight, α, is
sufficiently stronger than the feedback connection strength,
β. A condition like this must already be satisfied if the
network is to maintain its optimal memory properties and
also be dynamically stable at the same time (Ganguli et al.,
2008).

In normal networks, however, linear decoding is further
degraded by interference from signals entering the net-
work at different time points, in addition to the degrada-
tion caused by the non-linearity. This is easiest to see
in the identity network (a similar argument holds for the
random orthogonal example too), where the responses of
the neurons after N time steps are identically given by
f(f(. . . f(f(s1) + s2) . . .) + sN ), if one assumes v =
[1, 1, 1, . . . , 1]>. Linear decoding is harder in this case,
because a signal st−k is both distorted by multiple steps of

non-linearity and also mixed with signals entering at other
time points.

2.3. Experiments

Because assuming an a priori non-normal structure for an
RNN runs the risk of being too restrictive, in this paper,
we instead explore the promise of non-normal networks as
initializers for RNNs. Throughout the paper, we will be pri-
marily comparing the four RNN architectures schematically
depicted in Figure 1a as initializers: two of them normal net-
works (identity and random orthogonal) and the other two
non-normal networks (chain and chain with feedback), the
last two being motivated by their optimal memory properties
in the linear case, as reviewed above. We provide PyTorch
and Keras classes implementing the proposed non-normal
initializers at the following public repository: https:
//github.com/eminorhan/nonnormal-init.

2.3.1. COPY, ADDITION, PERMUTED SEQUENTIAL
MNIST

Copy, addition, and permuted sequential MNIST tasks were
commonly used as benchmarks in previous RNN studies

https://github.com/eminorhan/nonnormal-init
https://github.com/eminorhan/nonnormal-init
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Figure 2. Linear decoding experiments. a In a linear network with
no noise, the past signal s1 can be perfectly reconstructed from the
current activity vector h100 using a linear decoder. b When noise
is added, the chain network outperforms the orthogonal network
as predicted from the theory in Ganguli, et al. (2008). c In a
completely deterministic system, introducing a non-linearity has a
similar effect to that of noise. The chain network again outperforms
the orthogonal one when the signal is reconstructed with a linear
decoder. As discussed further in the text, this is because the signal
is subject to more interference in the orthogonal network than in
the chain network. All simulations in this figure used networks
with N = 100 recurrent units. In c, we used the elu non-linearity
for f(·) (Clevert et al., 2016). For the chain network, we assume
that the signal is always fed at the source neuron.

(Arjovsky et al., 2016; Bai et al., 2018; Chang et al., 2017;
Hochreiter & Schmidhuber, 1997; Le et al., 2015; Wisdom
et al., 2016). We now briefly describe each of these tasks.

Copy task: The input is a sequence of integers of length
T . The first 10 integers in the sequence define the target
subsequence that is to be copied and consist of integers
between 1 and 8 (inclusive). The next T − 21 integers are
set to 0. The integer after that is set to 9, which acts as the
cue indicating that the model should start copying the target
subsequence. The final 10 integers are set to 0. The output
sequence that the model is trained to reproduce consists of
T −10 0s followed by the target subsequence from the input
that is to be copied. To make sure that the task requires a
sufficiently long memory capacity, we used a large sequence
length, T = 500, comparable to the largest sequence length
considered in Arjovsky, et al. (2016) for the same task.

Addition task: The input consists of two sequences of
length T . The first one is a sequence of random numbers
drawn uniformly from the interval [0, 1]. The second se-
quence is an indicator sequence with 1s at exactly two po-
sitions and 0s everywhere else. The positions of the two
1s indicate the positions of the numbers to be added in the
first sequence. The target output is the sum of the two cor-
responding numbers. The position of the first 1 is drawn

uniformly from the first half of the sequence and the posi-
tion of the second 1 is drawn uniformly from the second
half of the sequence. Again, to ensure that the task requires
a sufficiently long memory capacity, we chose T = 750,
which is the same as the largest sequence length considered
in Arjovsky, et al. (2016) for the same task.

Permuted sequential MNIST (psMNIST): This is a se-
quential version of the standard MNIST benchmark where
the pixels are fed to the model one pixel at a time. To make
the task hard enough, we used the permuted version of the
sequential MNIST task where a fixed random permutation is
applied to the pixels to eliminate any spatial structure before
they are fed into the model.

We used the elu nonlinearity for the copy and the permuted
sequential MNIST tasks (Clevert et al., 2016), and the relu
nonlinearity for the addition problem (because relu proved
to be more natural for remembering positive numbers).

As mentioned above, the scaled identity and the scaled ran-
dom orthogonal networks constituted the normal initializers.
In the scaled identity initializer, the recurrent connectivity
matrix was initialized as W = λI and the input matrix V
was initialized as Vij ∼ N (0, 0.9/

√
N). In the random

orthogonal initializer, the recurrent connectivity matrix was
initialized as W = λQ, where Q is a random dense orthog-
onal matrix, and the input matrix V was initialized in the
same way as in the identity initializer.

The feedforward chain and the chain with feedback net-
works constituted the non-normal initializers. In the chain
initializer, the recurrent connectivity matrix was initialized
as Wij = αδj,i−1 and the input matrix V was initial-
ized as V ∼ 0.9IN×d, where IN×d denotes the N × d-
dimensional identity matrix. In the chain with feedback
initializer, the recurrent connectivity matrix was initialized
as Wij = 0.99δj,i−1 +βδj,i+1 and the input matrix V was
initialized in the same way as in the chain initializer.

We used the rmsprop optimizer for all models, which we
found to be the best method for this set of tasks. The learn-
ing rate of the optimizer was a hyperparameter which we
tuned separately for each model and each task. The follow-
ing learning rates were considered in the hyper-parameter
search: 8× 10−4, 5× 10−4, 3× 10−4, 10−4, 8× 10−5, 5×
10−5, 3× 10−5, 10−5, 8× 10−6, 5× 10−6, 3× 10−6. We
ran each model on each task 6 times using the integers from
1 to 6 as random seeds.

In addition, the following model-specific hyperparameters
were searched over for each task:

• Chain model: the feedforward connection weight, α ∈
{0.99, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05}

• Chain with feedback model: the feedback connection
weight, β ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}
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d e f

Figure 3. Results on the toy benchmarks. a-c Validation losses
with the best hyper-parameter settings. Solid lines are the means
and shaded regions are standard errors over different runs using
different random seeeds. For the copy and addition tasks, we also
show the loss values for random baseline models (dashed lines).
For the psMNIST task, the mean cross-entropy loss for a random
classifier is log(10) ≈ 2.3, thus all four models comfortably out-
perform this random baseline right from the end of the first training
epoch. d-f Number of “successful” runs (or hyperparameter con-
figurations) that converged to a validation loss below 50% of the
loss for the random baseline model. Note that the total number of
runs was higher for the normal models vs. the non-normal models
(594 vs. 462 runs per experiment). Despite this, the non-normal
models generally outperformed the normal models even by this
measure.

• Scaled identity model: the scale, λ ∈
{0.01, 0.96, 0.99, 1.0, 1.01, 1.02, 1.03, 1.04, 1.05}

• Random orthogonal model: the scale, λ ∈
{0.01, 0.96, 0.99, 1.0, 1.01, 1.02, 1.03, 1.04, 1.05}

This yields a total of 7 × 11 × 6 = 462 different runs for
each experiment in the non-normal models and a total of
9× 11× 6 = 594 different runs in the normal models. Note
that we ran more extensive hyper-parameter searches for the
normal models than for the non-normal models in this set
of tasks.

Figure 3a-c shows the validation losses for each model with
the best hyper-parameter settings. The non-normal initializ-
ers generally outperform the normal initializers. Figure 3d-f
shows for each model the number of “successful” runs that
converged to a validation loss below a criterion level (which
we set to be 50% of the loss for a baseline random model).
The chain model outperformed all other models by this mea-
sure (despite having a smaller total number of runs than the

normal models). In the copy task, for example, none of the
runs for the normal models was able to achieve the criterion
level, whereas 46 out of 462 runs for the chain model and
11 out of 462 runs for the feedback chain model reached the
criterion loss.

2.3.2. LANGUAGE MODELING EXPERIMENTS

To investigate if the benefits of non-normal initializers ex-
tend to more realistic problems, we conducted experiments
with three standard language modeling tasks: word-level
Penn Treebank (PTB), character-level PTB, and character-
level enwik8 benchmarks.

For the language modeling experiments in this subsec-
tion, we used the code base provided by Salesforce Re-
search (Merity et al., 2018a;b): https://github.com/
salesforce/awd-lstm-lm. We refer the reader to
Merity et al. (2018a; 2018b) for a more detailed description
of the benchmarks. For the experiments in this subsec-
tion, we generally preserved the model setup used in Merity
et al. (2018a; 2018b), except for the following differences:
1) We replaced the gated RNN architectures (LSTMs and
QRNNs) used in Merity et al. (2018a; 2018b) with vanilla
RNNs; 2) We observed that vanilla RNNs require weaker
regularization than gated RNN architectures. Therefore, in
the word-level PTB task, we set all dropout rates to 0.1.
In the character-level PTB task, all dropout rates except
dropoute were set to 0.1, which was set to 0. In the
enwik8 benchmark, all dropout rates were set to 0; 3)
We trained the word-level PTB models for 60 epochs, the
character-level PTB models for 500 epochs and the enwik8
models for 35 epochs.

We compared the same four models described in the pre-
vious subsection. As in Merity et al. (2018a), we used
the Adam optimizer and thus only optimized the α, β, λ
hyper-parameters for the experiments in this subsection. For
the hyper-parameter α in the chain model and the hyper-
parameter λ in the scaled identity and random orthogo-
nal models, we searched over 21 values uniformly spaced
between 0.05 and 1.05 (inclusive); whereas for the chain
with feedback model, we set the feedforward connection
weight, α, to the optimal value it had in the chain model
and searched over 21 β values uniformly spaced between
0.01 and 0.21 (inclusive). In addition, we repeated each
experiment 3 times using different random seeds, yielding a
total of 63 runs for each model and each benchmark.

The results are shown in Figure 4 and in Table 1. Figure 4
shows the validation loss over the course of training in units
of bits per character (bpc). Table 1 reports the test losses
at the end of training. The non-normal models outperform
the normal models on the word-level and character-level
PTB benchmarks. The differences between the models are
less clear on the enwik8 benchmark. However, in terms of

https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm
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Figure 4. Results on the language modeling benchmarks. Solid
lines are the means and shaded regions are standard errors over 3
different runs using different random seeeds.

Table 1. Test losses (bpc) on the language modeling benchmarks.
The numbers represent mean ± s.e.m. over 3 independent runs.
LSTM results are from Merity et al. (2018a; 2018b).

MODEL PTB WORD PTB CHAR. ENWIK8

IDENTITY 6.550 ± 0.002 1.312 ± 0.000 1.783 ± 0.003
ORTHO. 6.557 ± 0.002 1.312 ± 0.001 1.843 ± 0.046
CHAIN 6.514 ± 0.001 1.308 ± 0.000 1.803 ± 0.017
FB. CHAIN 6.510 ± 0.001 1.307 ± 0.000 1.774 ± 0.002

3-LAYER LSTM 5.878 1.175 1.232

the test loss, the non-normal feedback chain model signifi-
cantly outperforms the other models on all three benchmarks
(Table 1).

We note that the vanilla RNN models perform significantly
worse than the gated RNN architectures considered in Mer-
ity et al. (2018a; 2018b). We conjecture that this is because
gated architectures are generally better at modeling contex-
tual dependencies, hence they have inductive biases better
suited to language modeling tasks. The primary benefit
of non-normal dynamics, on the other hand, is enabling a
longer memory capacity. Below, we will discuss whether
non-normal dynamics can be used in gated RNN architec-
tures to improve performance as well.

2.3.3. REINFORCEMENT LEARNING (RL) EXPERIMENTS

Next, we conducted experiments with an RL agent trained
in the car racing environment CarRacing-v0 in OpenAI
Gym. Specifically, we used the model introduced in Ha &
Schmidhuber (2018) for this environment. For the exper-
iments reported in this subsection, we also used the code
base provided by the authors: https://github.com/
hardmaru/WorldModelsExperiments. Briefly, in
this model, the agent first collects a large number of roll-outs
from the environment using a random policy. These ran-
dom roll-outs are then used as training data for a variational
auto-encoder (VAE), learning a compact, low-dimensional
representation, z, of the agent’s high-dimensional obser-
vations. Then, a predictive model of this latent represen-

Table 2. Validation losses (negative log-likelihoods) for the pre-
dictive RNN model trained in the car racing environment
CarRacing-v0. The numbers are mean ± s.e.m. over 3 in-
dependent runs.

MODEL VALIDATION LOSS

IDENTITY 1.409 ± 0.004
CHAIN 1.392 ± 0.005

tation is learned via an RNN. More specifically, at each
time step, the RNN takes as input the current action of the
agent, at, and the current latent state of the environment,
zt, and predicts the next latent state, zt+1. Using an RNN
as a predictive model enables the agent to learn potentially
complex dependencies between the histories of the agent’s
actions and of the state of the environment. In the final
step, using the hidden state of the predictive RNN model
and the latent state of the environment, zt, a simple linear
controller is trained to perform the actual car racing task. Ha
& Schmidhuber (2018) train the predictive RNN model and
the controller separately (i.e. the entire model is not trained
end-to-end), thus we only consider the training of the RNN
in our experiments and ignore the training of the controller.
Accordingly, the loss values reported below are the valida-
tion losses (i.e. negative log-likelihoods) for the predictive
model only. For further details, we refer the reader to Ha
& Schmidhuber (2018). We essentially use the same set-up
that they use except for a few differences: 1) We replace the
LSTM with a vanilla RNN (with the same number of units)
as the predictive model; 2) We use a smaller number of
random roll-outs (300 vs. 10000); 3) We use the Adam opti-
mizer with a learning rate of 0.0005, instead of the rmsprop
optimizer.

For the experiments in this subsection, we only compared
RNNs initialized with a scaled identity matrix with RNNs
initialized with a chain structure. The hyper-parameter
searches conducted were identical to the searches described
above for the language modeling experiments. Table 2
shows the results. The chain model outperformed the iden-
tity model in terms of the final validation loss for the predic-
tive model.

2.4. Hidden feedforward structures in trained RNNs

We observed that training made vanilla RNNs initialized
with orthogonal recurrent connectivity matrices non-normal.
We quantified the non-normality of the trained recurrent con-
nectivity matrices using a measure introduced by Henrici
(1962): d(W) ≡

√
‖W‖2F −

∑
i |λi|2, where ‖ · ‖F de-

notes the Frobenius norm and λi is the i-th eigenvalue of
W. This measure equals 0 for all normal matrices and is
positive for non-normal matrices. We found that d(W) be-

https://github.com/hardmaru/WorldModelsExperiments
https://github.com/hardmaru/WorldModelsExperiments
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Table 3. Henrici indices, d(W), of trained RNNs initialized with
orthogonal recurrent connectivity matrices. The numbers represent
mean ± s.e.m. over all successfully trained networks. We define
training success as having a validation loss below 50% of a random
baseline model. Note that by this measure, none of the orthogonally
initialized RNNs was successful on the copy task (Figure 3d).

TASK IDENTITY ORTHOGONAL

ADDITION-750 2.33 ± 1.02 2.74 ± 0.07
PSMNIST 1.01 ± 0.12 2.72 ± 0.08

came positive for all successfully trained RNNs initialized
with orthogonal recurrent connectivity matrices. Table 3
reports the aggregate statistics of d(W) for orthogonally
initialized RNNs trained on the toy benchmarks.

Although increased non-normality in trained RNNs is an
interesting observation, the Henrici index, by itself, does
not tell us what structural features in trained RNNs con-
tribute to this increased non-normality. Given the benefits
of chain-like feedforward non-normal structures in RNNs
for improved memory, we hypothesized that training might
have installed hidden chain-like feedforward structures in
trained RNNs and that these feedforward structures were
responsible for their increased non-normality.

To uncover these hidden feedforward structures, we per-
formed an analysis suggested by Rajan et al. (2016). In
this analysis, we first injected a unit pulse of input to the
network at the beginning of the trial and let the network
evolve for 100 time steps afterwards according to its recur-
rent dynamics with no direct input. We then ordered the
recurrent units by the time of their peak activity (using a
small amount of jitter to break potential ties between units)
and plotted the mean recurrent connection weights, Wij , as
a function of the order difference between two units, i− j.
Positive i − j values correspond to connections from ear-
lier peaking units to later peaking units, and vice versa for
negative i− j values. In trained RNNs, the mean recurrent
weight profile as a function of i− j had an asymmetric peak,
with connections in the “forward” direction being, on aver-
age, stronger than those in the opposite direction. Figure 5
shows examples with orthogonally initialized RNNs trained
on the addition and the permuted sequential MNIST tasks.
Note that for a purely feedforward chain, the weight profile
would have a single peak at i − j = 1 and would be zero
elsewhere. Although the weight profiles for trained RNNs
are not this extreme, the prominent asymmetric bump with
a peak at a positive i− j value indicates a hidden chain-like
feedforward structure in these networks.
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Figure 5. Training induces hidden chain-like feedforward struc-
tures in vanilla RNNs. The units are first ordered by the time of
their peak activity. Then, the mean recurrent connection weight
is plotted as a function of the order difference between two units,
i − j. Results are shown for RNNs trained on the addition (a)
and the permuted sequential MNIST (b) tasks. The left column
shows the results for RNNs initialized with a scaled identity ma-
trix, the right column shows the results for RNNs initialized with
random orthogonal matrices. In each case, training induces hidden
chain-like feedforward structures in the networks, as indicated by
an asymmetric bump peaked at a positive i− j value in the weight
profile. This kind of structure is either non-existent (identity) or
much less prominent (orthogonal) in the initial untrained networks.
For the results shown here, we only considered sufficiently well-
trained networks that achieved a validation loss below 50% of the
loss for a baseline random model at the end of training. The solid
lines and shaded regions represent means and standard errors of
the mean weight profiles over these networks.

2.5. Do the benefits of non-normal dynamics extend to
gated RNN architectures?

So far, we have only considered vanilla RNNs. An important
question is whether the benefits of non-normal dynamics
demonstrated above for vanilla RNNs also extend to gated
RNN architectures like LSTMs or GRUs (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014). Gated RNN architec-
tures have better inductive biases than vanilla RNNs in many
practical tasks of interest such as language modeling (e.g.
see Table 1 for a comparison of vanilla RNN architectures
with an LSTM architecture of similar size in the language
modeling benchmarks), thus it would be practically very
useful if their performance could be improved through an
inductive bias for non-normal dynamics.

To address this question, we treated the input, forget, output
and update gates of the LSTM architecture as analogous to
vanilla RNNs and initialized the recurrent and input matri-
ces inside these gates in the same way as in the chain or the
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Table 4. Test losses (bpc) on the language modeling benchmarks
using 3-layer LSTMs (adapted from Merity et al. (2018a; 2018b))
with different initialization schemes. The numbers represent mean
± s.e.m. over 3 independent runs.

MODEL PTB WORD PTB CHAR. ENWIK8

ORTHO. 5.937 ± 0.002 1.230 ± 0.001 1.583 ± 0.001
CHAIN 5.935 ± 0.001 1.230 ± 0.001 1.586 ± 0.000
PLAIN 5.949 ± 0.007 1.245 ± 0.001 1.584 ± 0.002
MIXED 5.944 ± 0.004 1.227 ± 0.000 1.577 ± 0.001

orthogonal initialization of vanilla RNNs above. We also
compared these with a more standard initialization scheme
where all the weights were drawn from a uniform distribu-
tion U(−

√
k,
√
k) where k is the reciprocal of the hidden

layer size (labeled plain in Table 4). This is the default ini-
tializer for the LSTM weight matrices in PyTorch: https:
//pytorch.org/docs/stable/nn.html#lstm.

We compared these initializers in the language modeling
benchmarks. The chain initializer did not perform better
than the orthogonal initializer (Table 4), suggesting that
non-normal dynamics in gated RNN architectures may not
be as helpful as it is in vanilla RNNs. In hindsight, this is
not too surprising, because our initial motivation for intro-
ducing non-normal dynamics heavily relied on the vanilla
RNN architecture and gated RNNs can be dynamically very
different from vanilla RNNs.

When we looked at the trained LSTM weight matrices more
closely, we found that, although still non-normal, the re-
current weight matrices inside the input, forget, and output
gates (i.e. the sigmoid gates) did not have the same signa-
tures of hidden chain-like feedforward structures observed
in vanilla RNNs. Specifically, the weight profiles in the
LSTM recurrent weight matrices inside these three gates
did not display the asymmetric bump characteristic of a
prominent chain-like feedforward structure, but were in-
stead monotonic functions of i− j (Figure 6a-c), suggesting
a qualitatively different kind of dynamics where the individ-
ual units are more persistent over time. The recurrent weight
matrix inside the update gate (the tanh gate), on the other
hand, did display the signature of a hidden chain-like feed-
forward structure (Figure 6d). When we incorporated these
two different structures in different gates of the LSTMs, by
using a chain initializer for the update gate and a monotoni-
cally increasing recurrent weight profile for the other gates
(labeled mixed in Table 4), the resulting initializer outper-
formed the other initializers on the character-level PTB and
enwik8 benchmarks.

3. Discussion
Motivated by their optimal memory properties in a sim-
plified linear setting (Ganguli et al., 2008), in this paper,
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Figure 6. The recurrent weight matrices inside the input, forget,
and output LSTM gates do not display the characteristic signa-
ture of a prominent chain-like feedforward structure. The weight
profiles are instead a monotonic function of i− j. The recurrent
weight matrix inside the update (tanh) gate, however, does dis-
play a chain-like structure similar to that observed in vanilla RNNs.
The examples shown in this figure are from the input (a), forget
(b), output (c), and update gates (d) of the second layer LSTM in
a 3-layer LSTM architecture trained on the word-level PTB task.
The weight matrices shown here were initialized with orthogonal
initializers. Other layers and models trained on other tasks display
qualitatively similar properties.

we investigated the potential benefits of certain highly non-
normal chain-like RNN architectures in capturing long-term
dependencies in sequential tasks. Our results clearly demon-
strate an advantage for such non-normal architectures as
initializers for vanilla RNNs, compared to the commonly
used orthogonal initializers. We further found evidence for
the induction of such chain-like feedforward structures in
trained vanilla RNNs even when these RNNs are initialized
with orthogonal recurrent connectivity matrices.

The benefits of these chain-like non-normal initializers do
not directly carry over to more complex, gated RNN ar-
chitectures such as LSTMs and GRUs. In some important
practical problems such as language modeling, the gains
from using these kinds of gated architectures seem to far
outweigh the gains obtained from the non-normal initial-
izers in vanilla RNNs (see Table 1). However, we also
uncovered important regularities in trained LSTM weight
matrices, namely that the recurrent weight profiles of the
input, forget, and output gates (the sigmoid gates) in trained
LSTMs display a monotonically increasing pattern, whereas
the recurrent matrix inside the update gate (the tanh gate)
displays a chain-like feedforward structure similar to that
observed in vanilla RNNs (Figure 6). We showed that these
regularities can be exploited to improve the training and/or
generalization performance of these gated RNN architec-

https://pytorch.org/docs/stable/nn.html#lstm
https://pytorch.org/docs/stable/nn.html#lstm
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tures by introducing them as useful inductive biases to these
models.

There is a close connection between the identity initializa-
tion of RNNs (Le et al., 2015) and the widely used identity
skip connections (or residual connections) in deep feed-
forward networks (He et al., 2016). Given the superior
performance of chain-like non-normal initializers over the
identity initialization demonstrated in the context of vanilla
RNNs in this paper, it could be interesting to look for simi-
lar chain-like non-normal architectural motifs that could be
used in deep feedforward networks in place of the identity
skip connections.
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