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Despite enormous progress in machine learning, artificial neural networks still lag behind brains in their
ability to generalize to new situations. Given identical training data, differences in generalization are caused
by many defining features of a learning algorithm, such as network architecture and learning rule. Their
joint effect, called ‘‘inductive bias,’’ determines how well any learning algorithm—or brain—generalizes:
robust generalization needs good inductive biases. Artificial networks use rather nonspecific biases and
often latch onto patterns that are only informative about the statistics of the training data but may not
generalize to different scenarios. Brains, on the other hand, generalize across comparatively drastic
changes in the sensory input all the time. We highlight some shortcomings of state-of-the-art learning
algorithms compared to biological brains and discuss several ideas about how neuroscience can guide
the quest for better inductive biases by providing useful constraints on representations and network archi-
tecture.
1. Introduction
The brain is an intricate systemdistinguished by its ability to learn

to perform complex computations underlying perception, cogni-

tion, andmotor control—defining features of intelligent behavior.

For decades, scientists have attempted to mimic its abilities in

artificial intelligence (AI) systems. These attempts had limited

success until recent years when successful AI applications

have come to pervade many aspects of our everyday life. Ma-

chine learning algorithms can now recognize objects and speech

and have mastered games like chess and Go, even surpassing

human performance (i.e., DeepMind’s AlphaGo Zero). AI sys-

tems promise an even more significant change to come:

improving medical diagnoses, finding new cures for diseases,

making scientific discoveries, predicting financial markets and

geopolitical trends, and identifying useful patterns in many other

kinds of data.

Our perception of what constitutes intelligent behavior and

how we measure it has shifted over the years as tasks that

were considered hallmarks of human intelligence were solved

by computers while tasks that appear to be trivial for humans

and animals alike remained unsolved. Classical symbolic AI

focused on reasoning with rules defined by experts, with little

or no learning involved. The rule-based system of Deep Blue,

which defeated Kasparov in 1997 in chess, was entirely

determined by the team of experts who programmed it. Unfortu-

nately, it did not generalize well to other tasks. This failure and

the challenge of artificial intelligence even today are summarized

in ‘‘Moravec’s paradox’’ (Moravec, 1988): ‘‘it is comparatively

easy to make computers exhibit adult level performance on

intelligence tests or playing checkers, and difficult or impossible
to give them the skills of a one-year-old when it comes to

perception and mobility.’’ While rules in symbolic AI provide a

lot of structure for generalization in very narrowly defined tasks,

we find ourselves unable to define rules for everyday tasks—

tasks that seem trivial because biological intelligence performs

so effortlessly well.

The renaissance of AI is a result of a major shift of methods

from classical symbolic AI to connectionist models used by ma-

chine learning. The critical difference from rule-based AI is that

connectionist models are ‘‘trained,’’ not ‘‘programmed.’’ Search-

ing through the space of possible combinations of rules in sym-

bolic AI is replaced by adapting parameters of a flexible

nonlinear function using optimization of an objective (goal) that

depends on data. In artificial neuronal networks, this optimiza-

tion is usually implemented by backpropagation, an algorithm

developed by Paul Werbos in his PhD thesis in 1974 (Werbos,

1974). A considerable amount of effort in machine learning is be-

ing devoted to figuring out how this training can be done most

effectively, as judged by how well the learned concepts gener-

alize and how many data points are needed to robustly learn a

new concept (‘‘sample complexity’’).

The current state-of-the-art methods in machine learning are

dominated by deep learning: multi-layer (deep) artificial neural

networks (DNNs, Figure 1), which draw inspiration from the

brain. Most fundamental is the idea of neurons as elementary

adaptive nonlinear processing units (McCulloch and Pitts,

1943), which includes the notion of analog computation that is

not well captured by the toolbox of formal logic (Rosenblatt,

1957). Each artificial neuron aggregates inputs from other neu-

rons using weighted summation analogous to synaptic weights
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Figure 1. General Structure of Artificial Deep Neural Networks
Shown is the large-scale feedforward convolutional network architecture of
GoogLeNet (Szegedy et al., 2015). Detail illustrates the smaller-scale structure
within each layer, which comprises a set of feature maps and their input and
output synaptic connections. Neurons in these layers typically tile visual space
with spatially shifted copies of the same input and output weights (one
example pattern of input weights is shown in red). For visual processing, this
produces a three-dimensional array of neurons: length 3 width 3 features.
These neurons apply a simple nonlinear function to their pooled inputs.
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of real neurons, followed by a simple nonlinearity such as a recti-

fier (ReLU) or a sigmoid function (logistic function or tanh) analo-

gous to input-output nonlinearities of neurons. Deep networks

arrange their neurons in several layers, where each layer pro-

vides the input to the neurons in the next layer, analogous to

the multitude of hierarchically organized brain areas for process-

ing visual information, for example. In some deep learning archi-

tectures, local competition implemented by a winner-take-all

operation (max pooling) is reminiscent of local competitive inhib-

itory interactions in brain circuits. Despite these similarities, the

elements of artificial neural networks strongly abstract from

neurophysiological details. In convolutional networks, the linear

summation coefficients are shared across space (i.e., there is a

neuronwith exactly the same linear receptive field at each spatial

location), and during learning, weights change for all locations at

once. This massively reduces the number of parameters that

need to be learned from data. All neurons with the same recep-

tive field shape (but shifted to different locations) are assembled

into a ‘‘feature channel,’’ and there can bemany feature channels

per layer in a neuronal network. A lot of these ingredients have

been around for several decades already, but thanks to a com-

bination of training on very large datasets, advances in

computing hardware, the development of software libraries,

and a lot of tuning of the training schemes, it is now possible

to train very large neural networks.

While machine learning had been studied only by a small

crowd of academic researchers up until this decade, the success

of deep learning in solving real-world problems has generated

massive interest from industry and led to a complete paradigm

shift in the field. Within a few years, machine learning has

become the key technology used in virtually all AI applications.

Importantly, the same learning approach that enabled AlphaGo
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to achieve superhuman performance in Go has also been used

to learn other games like shogi or even win against some of the

best chess programs like Stockfish. Because of the ability of

this approach to generalize, it represents a much more profound

leap in intelligence than Deep Blue.

With the help of deep networks, it is nowpossible to solve some

perceptual tasks that are simple for humans but used to be very

challenging for AI. The so-called ImageNet benchmark (Russa-

kovsky et al., 2015), a classification task with 1,000 categories

on photographic images downloaded from the internet, played

an important role in demonstrating this. Besides solving this

particular task at human-level performance (He et al., 2016), it

also turned out that pre-training deep networks on ImageNet

can often be surprisingly beneficial for all kinds of other tasks (Do-

nahue et al., 2014). In this approach, called ‘‘transfer learning,’’ a

network trained on one task, such as object recognition, is reused

in another task by removing the task-specific part (layers high up

in the hierarchy) and keeping the nonlinear features computed by

the hidden layers of the network. This makes it possible to solve

tasks with complex deep networks that usually would not have

had enough training data to train the network de novo. In many

computer vision tasks, this approach works much better than

handcrafted features that used to be state of the art for decades.

In saliency prediction, for example, the use of pre-trained features

has led to a dramatic improvement of the state of the art

(K€ummerer et al., 2015, 2018). Similarly, transfer learning has

proven extremely useful in the behavioral tracking of animals:

using a pre-trained network and a small number of training im-

ages (z200) for fine-tuning enables the resulting network to

perform very close to human-level labeling accuracy (Mathis

et al., 2018; Insafutdinov et al., 2016; Pishchulin et al., 2016).

As recently pointed out by Sutton (2019), the bitter lesson of AI

is that flexible methods so far have always outperformed hand-

crafted domain knowledge in the long run. Search-based

methods of Deep Blue beat strategies attempting a deeper ana-

lytic understanding of the game, and DNNs consistently outper-

form handcrafted features used for decades in computer vision.

However, flexibility alone cannot be the silver bullet. Without the

right (implicit) assumptions, generalization is impossible (Mitch-

ell, 1980; Wolpert andMacready, 1995, 1997). While the success

of deep networks on narrowly defined perceptual tasks is a ma-

jor leap forward, the range of generalization of these networks is

still limited. Themajor challenge in building the next generation of

intelligent systems is to find sources for good implicit biases that

will allow for strong generalization across varying data distribu-

tions and rapid learning of new tasks without forgetting previous

ones. These biases will need to be problem domain specific.

Because biological brains excel at so many relevant real-world

problems, it is worthwhile to ponder how they can be used as

a source for good inductive biases. In the following, we lay out

a few insights and ideas in this direction.

2. Current Limits of AI
The impressive—sometimes superhuman—performance of

DNNs inmany complex perceptual tasksmight suggest that their

sensory representations and decision making are similar to hu-

mans. Indeed, there seems to be an overlap between the sen-

sory representations that DNNs trained on object recognition
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Figure 2. Despite Impressive Successes, Deep
Neural Networks Have Many Important Failure
Modes
(A) While DNNs trained on object recognition reach
almost human-like performance on clean images
(top), there exist minimal perturbations (center) that, if
added to the image, can completely derail their pre-
diction (bottom). Perceptually, humans can see
almost no difference between the clean and the per-
turbed image even with close inspection (Szegedy
et al., 2013).
(B) When networks are trained on standard color im-
ages and tested on color images, they outperform
humans (top). Similarly, when trained and tested on
images with the same type of noise, the performance
is superhuman (middle). However, when tested on a
different type of noise than at training time, the per-
formance is at chance level (bottom). Human ob-
servers have no trouble classifying the images
correctly (Geirhos et al., 2018).
(C) Examples of original and texturized images using
neuronal style transfer. A vanilla VGG-16 still reaches
high accuracy on the texturized images while humans
suffer greatly from the loss of global shapes in many
images (Brendel and Bethge, 2019).
(D) Deep networks have a texture bias. When the
shape and the texture of a class are put in conflict,
deep networks tend to decide based on the texture
while humans decide based on the shape (Geirhos
et al., 2019).
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tasks create and representations measured in primate brains

(Yamins et al., 2014; Yamins and DiCarlo, 2016; Khaligh-Razavi

and Kriegeskorte, 2014; G€uçl€u and van Gerven, 2014; Cadena

et al., 2019). However, even though DNNs perform well when

the conditions at training and test time do not differ too much,

testing them outside of their training domain demonstrates that

the nature of generalization and decision making is qualitatively

different from biological sensory systems.

2.1 Lack of Robustness against Changes in the Input

Statistics: Adversarial Examples andDomain Adaptation

Humans have impressive generalization capabilities, and behav-

ioral neuroscience studies suggest that the ability to generalize

categories and rules to novel situations and stimuli is also pre-

sent in many other animals, including rodents (Murphy et al.,

2008), birds (Vaughan, 1988; Soto and Wasserman, 2014), and

monkeys (Minamimoto et al., 2010). The exact meaning of

‘‘generalization beyond the training set’’ is much harder to define

for animals that have had a lifetime of diverse visual experience

with natural scene statistics (Tenenbaum et al., 2011) and gener-

ations of ancestors that were selected through evolutionary

pressure to have a good architecture in that environment (Zador,

2019). Nonetheless, it is clear that artificial networks lack several

key generalization capabilities compared to biological brains.

A particularly striking example of the gap between humans

and machines are ‘‘minimal adversarial perturbations’’ of the

input image discovered in computer vision networks (Szegedy

et al., 2013). Adversarial perturbations are virtually imperceptible
to humans but can flip the prediction of

DNNs to any desired target class

(Figure 2A). This means that the decision

boundaries of all classes are extremely
close to any given input sample. To the best of our current

knowledge, this is not the case for humans under normal

viewing conditions (one study finds a small effect under time

limited viewing conditions [Elsayed et al., 2018]) and highlights

that DNNs lack human-level scene understanding and do not

rely on the same causal features as humans for visual

perception.

One key problem in making networks less vulnerable to adver-

sarial examples is the difficulty of reliably evaluating model

robustness. It has been repeatedly shown (Athalye et al., 2018;

Athalye and Carlini, 2018) that virtually all defenses against

adversarial examples proposed in the literature do not increase

model robustness per se but merely prevent existing attacks

from properly finding minimal adversarial examples. Until

recently, the only defense considered effective (Athalye et al.,

2018) was a particular type of training explicitly designed to

guard against adversarial attacks (Madry et al., 2018). However,

a recent paper (Schott et al., 2019) showed that the defending

network does not learn more causal, human-like features but

instead just exploits the binary nature of the dataset (MNIST, a

collection of handwritten digits) and is thus unlikely to generalize

to all natural images. Thus, current networks are not robust to

adversarial examples, even on the simplest toy datasets of ma-

chine learning, such as MNIST. Understanding why the only

existing robust systems—biological visual systems—are not

vulnerable to adversarial computations could be an important

guidance to the next generation of DNNs.
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Domain adaptation is another striking example of the differ-

ence in generalization between biological and artificial vision

systems and an opportunity for benchmarking the robustness

of machine learning algorithms with direct practical relevance

(Wang and Deng, 2018; Donahue et al., 2014). Humans gener-

alize across a wide variety of changes in the input distribution,

such as vast differences in illumination, changing scene con-

texts, or image distortions from snowflakes or rain. While hu-

mans are certainly exposed to a number of such distortions dur-

ing their lifetime, there seems to be a fundamental difference in

how the visual system generalizes to new inputs from a distribu-

tion that has not been previously experienced. The ability to

generalize beyond the standard assumption of independent

and identically distributed (i.i.d.) samples at test time would be

highly desirable for machine learning algorithms, as many real-

world applications involve such shifts in the input distribution.

For instance, recognition systems of autonomous driving cars

should be robust against a large spectrum of weather phenom-

ena that they might not have experienced at training time, such

as ash falling from a nearby volcano. Thus, the general robust-

ness against input distortions by different types of noise can

be used as one relevant case study to test the generalization

beyond the i.i.d. assumption in machines and humans.

A recent study by Geirhos et al. (2018) demonstrated that hu-

mans generalize much better across different image distortions

than deep networks, even though deep networks perform well

on the distortions if they had access to them at training time

(Figure 2B). The study explored the effect of twelve different

types of low-level noise on the object recognition performance

of both humans and machines. The latter were trained on either

clean or distorted images (Geirhos et al., 2018). When the net-

works were tested on the same domain on which they were

trained (i.e., the same type of noise), they consistently outper-

formed human observers by a large margin, showing that the

networks were able to ‘‘solve’’ the distortions under i.i.d. train-

test conditions. However, when the noise distribution during

testing differed from noise seen during training, the performance

of the networks was very low even for small distortions.

2.2 Decision Making in Deep Networks

The lack of robustness to simple changes in the input statistics

indicates that deep networks lack human-like scene under-

standing. In particular, they seem to lack integration of long-

range dependencies between elements within images, such as

different parts of an object.

A recent study tested this hypothesis by probing deep net-

works for the kind of information used in decision making and

found that they mostly rely on local features and largely ignore

their spatial arrangement (Brendel and Bethge, 2019). The

key approach in this studywas to build a network that had partic-

ular properties by design and to subsequently demonstrate that

it behaves very similar to standard deep architecture. To this

end, the authors designed networks in which neurons in the

last convolutional layer only looked at very small patches in the

input image. The activity of the final layer was subsequently

summed across space before it was fed into a linear classifier

for object recognition. By construction this network is invariant

against the exact position of a particular patch in the image,

which is why it was named the ‘‘Bag-of-Feature’’ (BoF) network.
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In addition to this invariance property, the design of the network

also allowed the authors to quantify howmuch each image patch

contributes to the decision of the network.

Brendel and Bethge (2019) compared the behavior of this BoF

model to VGG-16, which is a widely used architecture in com-

puter vision. First, they established that their BoF model can

achieve a comparable performance to VGG-16 (Simonyan and

Zisserman, 2015). They subsequently showed that a number of

key features of linear BoF models also hold true for VGG-16.

First, the BoF model predicts that shuffling local features should

not affect the classification performance as the local feature

patch histogram is unaffected (Figure 2C). They further corrobo-

rated this by demonstrating that the performance of VGG-16

only drops from 90:1% to 79:4% on texturized images based

on neural style transfer (Figure 2D) (Gatys et al., 2015). This sug-

gests that in stark contrast to humans, VGG-16 does not rely on

global shape integration for perceptual discrimination but rather

on statistical regularities in the histogram of local image features.

Second, the linear classifier on top of the bag of features predicts

that manipulations in separate parts of the image should not

interact, which they also find to be true for VGG. Finally, they

demonstrate that BoF models and VGG-16 make similar errors,

and, with the help of saliency techniques, show that VGG-16

uses very similar image features for decision making as BoF

models. This indicates why VGG and similar networks generalize

poorly: they are extracting local features and ignoring informative

large-scale structure in the input data.

3. Better Generalization through Constraints
In some sense, it is surprising that ImageNet canbe solved to high

accuracy with only bags of small visual words. This finding alone

already suggests that DNNs trained on this task learn only the sta-

tistical regularities present in local image features, since there is

no selective pressure from the objective function used during

training to do otherwise. Learning to extract larger image features

such as global object shapes, which are highly variable and are

presented only a small number of times (number of training im-

ages per class), is muchmore challenging than to learn the statis-

tical relationship between class identity and thousands of local

image features present in each sample. This inductive argument,

as well as the additional evidence presented above, suggests

that object recognition alone is insufficient to force DNNs to learn

a more physical and causal representation of the world.

The shortcomings described above suggest that the next gen-

eration of intelligent algorithms will not be achieved by following

the current strategy of making networks larger or deeper.

Perhaps counterintuitively, it might be the exact opposite. We

know already that networks have enough capacity to express

most functions because the class of networks that have only

one layer of neurons with sigmoidal activation functions can

theoretically fit any continuous function provided there are

enough neurons (Cybenko, 1989). Even with a limited number

of neurons, there is currently little evidence that deep networks

are limited in their capacity to fit our current datasets. In fact,

one of the first steps of practitioners is often to overfit the

network on the training data to assert adequate power for a

particular dataset. Similarly, the study on noise robustness by

Geirhos et al. (2018) discussed above shows that networks
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Figure 3. Improving Deep Networks at Three
Levels
(A) Instead of training networks on narrow tasks
like object classification, it will be better to use
‘‘multi-task training,’’ where the network is re-
warded for correct performance on diverse low- and
high-level tasks involving latent variables across
scales and complexity. Networks can be trained to
generate latent representations that are similar to
those observed in functioning brains. Finally, net-
works can be endowed with biological structure at
the implementational level, matching architectural
and/or microcircuit features. These types of im-
provements relate to Marr’s three levels of analysis
(Marr, 1982).
(B) These different levels provide complementary
constraints on the space of possible solutions.
Many network architectures are so expressive that
they can not only learn to provide natural images
with appropriate labels but can even learn to match
randomly permuted labels (Zhang et al., 2016). Such
networks generalize weakly within their training set
but perform poorly outside of that set. Multi-task
training for the same network provides additional
restrictions (blue). We get additional constraints by
enforcing that hidden layers in artificial networks
can predict neural responses, thereby pulling rep-
resentations toward those of a successful strong
generalization machine, the brain (red). Finally, by

constraining network structures and operations to mimic those measured in the brain, canonical operations (green), We expect that the intersection of these
constraints will produce networks that have stronger generalization performance.
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can be trained on each single type of noise distortion, suggesting

that network capacity is not the limit. Thus, there is probably a

very large group of networks, our visual system included, that

can solve single tasks such as ImageNet, but they might use

vastly different solution strategies and exhibit quite different

robustness and generalization properties. This implies that our

current datasets, even though they contain millions of examples,

simply do not provide enough constraints to direct us toward a

solution that is similar enough to our visual system to exhibit its

desirable robustness and generalization properties. Therefore,

the challenge is to come up with learning strategies that single

out those well-generalizing networks among the many networks

that can fit a particular dataset. Oneway to do that is to constrain

the class of networks to narrow it down to solutions that gener-

alize well. In other words, we need to add more bias to the class

of models.

It is helpful to distinguish two types of bias, which we will call

‘‘model bias’’ and ‘‘inductive (or learning) bias’’. Model bias

works like a prior probability in Bayesian inference: given some

input that is inevitably ambiguous, a ‘‘fixed’’ network will favor

certain interpretations over others or may exclude some inter-

pretations entirely. ‘‘Inductive or learning bias’’ determineswhich

fixed network is picked by the learning algorithm from the class

ofmodels given the set of training data. By ‘‘class of models,’’ we

mean a set of functions from inputs to predictions. A learning

algorithm picks one function from that set of functions (also

called ‘‘hypothesis space’’). For instance, for a given network ar-

chitecture, all networks with different values for their synaptic

weights constitute a model class. Once the weights are fixed,

we get a single model from that class, with its own model

bias—that is, its own way of interpreting new inputs. However,

the model class could be much bigger and also include models

with different network architectures. Which weights are learned
(i.e., which inductive bias comes to bear) is affected by many

aspects, such as the architecture, the learning rule or optimiza-

tion procedure, the order in which data are presented, and the

initial condition of the system. A good learning system for a

particular problem will have an inductive bias that chooses net-

works that generalize well. Importantly, the inductive bias is ulti-

mately problem specific. Mathematically, there is no universal

inductive bias that works well on all problems (Wolpert andMac-

ready, 1995, 1997). In the following, we are mainly discussing

ideas for how neuroscience can be used to influence the induc-

tive bias of artificial systems.

Biological systems can provide a source for inductive biases in

several ways (Figure 3). First, biological organisms need to learn

continually with the same neural network and thus critically rely

on generalization across different tasks and domains (Rebuffi

et al., 2017; van de Ven and Tolias, 2019). The more tasks to

be solved with a single network, the fewer networks that can

solve all of them and thus the stronger the resultant inductive

bias on the class of models. The challenge is to define a good se-

lection of tasks that can synergistically lead to a better bias and

on which a single network can achieve a high generalization per-

formance on all tasks (see Zamir et al., 2018 for a comparison of

tasks in transfer learning). Because humans and other biological

systems already solve a number of tasks with one brain, they can

be a good source of inspiration to select tasks. Second, neuro-

physiological data provide a window into the evolved represen-

tations of a strongly generalizing network: the brain. By con-

straining an artificial network to match those representations

(for example, by predicting the neural responses), we may bias

the network toward reproducing the encoded latent variables

that facilitate brain-like generalization. Third, the structure of a

specific network introduces a particular inductive bias. This

structure may be specified at a coarse scale, like the number,
Neuron 103, September 25, 2019 971



Figure 4. Neural Co-training Hypothesis
The brain has acquired a robust representation that generalizes across many
tasks. Multi-task training with massive neurophysiological recordings should
bias the representation of task-trained network toward these neural repre-
sentations. This will not necessarily yield better performance on dataset of the
task itself but could improve other aspects of the network such as a more
robust generalization beyond the statistics of the training set.
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size, and connectivity between hidden layers or extent of neuro-

modulation, and at a fine scale, like the cell types, nonlinearities,

canonical wiring rules in a local circuit, and local plasticity rules.

One may also attempt to define structure at even smaller scales,

looking at dendritic morphology or ion channel distribution

(Markram, 2006). This level of detail is, at present, only weakly

constrained by available neuroscience data, and the benefits

for machine learning remain unclear, so we will not consider

this finest scale here. Instead, we will focus on nonlinear input-

output relationships and patterns of synaptic weights in assem-

blies of neurons. In the next sections, we will describe how con-

straints at these three levels (computational, representational,

and implementational) could help create better machine learning

models as well as better models of the brain.

3.1 Multi-task Learning and Data Augmentation

Convincing progress in artificial intelligence must yield models

that perform well on all tasks we use to measure intelligence,

including robustness to alterations in the input statistics that

approximately preserve task-relevant information, such as a

change in texture or different levels of noise. In principle, this

does not need to happen in a single model. However, biological

brains are proof that systems exist that solve all tasks with a sin-

gle network. From empirical and theoretical results in machine

learning, we also know that solving many tasks at once helps

improve the inductive bias of a class of networks by constraining

the space of solutions (Caruana, 1993; Baxter, 2000; Zhang and

Yang, 2017; Ruder, 2017). As far as we know, training on a single

task—albeit using a large dataset such as ImageNet—is not

sufficient for this purpose (see Section 2). So one approach is

to take inspiration from the perceptual and cognitive abilities of

biological brains to define training regimens that enforce a

network class with a better inductive bias and produce networks

that generalize better. Deep learning offers an excellent frame-

work to build such integrated models (Ruder, 2017) because

its algorithms are already capable of solving single tasks so
972 Neuron 103, September 25, 2019
well. Two ways of carefully choosing additional training data—

‘‘data augmentation’’ and ‘‘multi-task learning’’—can introduce

an inductive bias.

In data augmentation, an existing dataset is enriched by

including more examples that have been generated from the ex-

istingdataset. Data augmentations, such as randomcrops or flips

of the input images, are common practice in a state-of-the-art

machine learning algorithm. The idea is to include the input trans-

formation that the networks should be invariant against at training

time. The problem is that we do not know which transformations

make networksmore robust, not tomention that the generation of

the augmented datasets might generally be a hard problem. The

cognitive abilities of the brain can be a great source of inspiration

for defining good augmentations. For instance, a recent study

used neuronal style transfer to generate imageswith cue conflicts

between shape and texture using neuronal style transfer (Geirhos

et al., 2019) and asked human subjects and deep networks to

classify those images. Unsurprisingly, humans had a strong

shape bias while deep networks had a strong texture bias.

When they trained the networks on an augmented dataset

including the texturized images, the networks were not only

able to solve the original problem just as well but also became

more robust against noise distortions. This is presumably

because the decisions were now more based on shape than

texture, and shape is more robust to the noise distortions. Just

training networks on different noise-distorted images could not

produce this effect (Geirhos et al., 2018). This indicates that our

perception can be used to generate smart data augmentations

that bias the networks in useful directions. However, data

augmentation has limits since the number of possible combina-

tions of different augmentations grows exponentially with the

number of augmentation methods. Unless the different augmen-

tations are not independent, this could become infeasible as the

number of augmented data points grows too quickly.

In multi-task learning, one network is trained on different tasks

at the same time. There are multiple ways to combine tasks in a

network (Zhang and Yang, 2017; Ruder, 2017; Caruana, 1997).

The most widely used is to share features within a network.

Multi-task learning theoretically (Baxter, 2000) and practically

(Caruana, 1997) improves the generalization (inductive bias)

and the data efficiency (Zamir et al., 2018) (the number of data

points needed to reach a certain performance) for a single

task. Clearly, not all tasks should be equally useful for better

generalization. Ideally, they should be related so that they can

profit from shared features. Here again, the brain can be a source

of inspiration for tasks; for example, in order to answer the ques-

tion of which network features should be shared between which

tasks, it could be fruitful to look at the functional modularity of

biological networks and stimulus representations across

different parts of the brain.

3.2. Representations from Neuronal Data

It is not yet clear whether tasks, even if there are many of them,

are sufficient to narrow down the model class, nor what features

in a network should be shared between which tasks. A stronger

hypothesis is that constraining the network class with the inter-

mediate representations of brains that can achieve the desired

performance will bias the network class even further in the right

direction (Figure 4). This section discusses this hypothesis,
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which could not only lead to better AI models but also a better

understanding of our brain by linking representations and tasks

in a single model.

Past attempts of including structure from neuroscience were

focused on first-order properties, such as Gabor-shaped recep-

tive fields in early layers, or other functional properties derived

from parametric models of neuronal activity (Riesenhuber and

Poggio, 1999). However, these early attempts might have been

too constrained and did not perform as well as more flexible

deep convolutional networks. One central question is: to modify

these flexible networks to avoid their shortcomings (see Section

2), which properties should we try to transfer from neuronal sys-

tems? One possible approach is to use a single network to solve

two tasks, one being the practical task of interest and the other

being to predict neuronal responses.

The task of predicting neuronal activity r from input stimuli z is

referred to as ‘‘system identification’’ and is the most immediate

and quantifiable way to capture the dynamics of activity under-

lying neuronal computations. System identification has a long

tradition in neuroscience, especially for sensory areas such as

audition (Knudsen and Konishi, 1978; Theunissen et al., 2001;

Calabrese et al., 2011), touch (Chagas et al., 2013), electrosen-

sation (Wessel et al., 1996; Gabbiani et al., 1996), olfaction (Gef-

fen et al., 2009), and vision (Marmarelis and Naka, 1972; Chi-

chilnisky, 2001; Pillow et al., 2008). Most neuronal system

identification models can be subsumed by the framework of a

generalized linear model (GLM)

brðzÞ = gðwuFðzÞÞ;

which predicts responses br through four major parts: a set of

(potentially nonlinear) stimulus featuresFðzÞ, a vectorw of coef-

ficients for combining them, a static nonlinearity g, and a loss

function Lðr;br;pðzÞÞ measuring the goodness of fit between

model predictions brðzÞ and biological neuronal response rðzÞ
averaged over a distribution of inputs pðzÞ.
To extract computational features that are useful for more

intelligent networks, we need to look beyond the simple input-

output transformation of an individual neuron and extract

more general features. The latent feature representation FðzÞ
can play this role by capturing the nonlinear features required

to predict neuronal responses. It characterizes all nonlinear

transformations the brain has performed leading up to the

responses of the target neurons. Notably, these features ab-

stract away the biological implementation-level details of the

computations.

The hypothesis that neuronal data can inform machine

learning algorithms by providing additional constraints on the

model class posits (1) the existence of a latent feature space

that generalizes across all neurons in a certain group (e.g., the

same cell type and/or the same brain area) and across stimuli

and (2) that these features are useful not only for predicting

neuronal data but also for performing tasks. Intuitively, (1) means

that neurons in a group perform similar computations as the ones

captured by the latent nonlinear representation F, while (2)

means that these features should be useful for tasks the system

might face as well. Several lines of recent work provide evidence

that this might be the case.
Regarding (1), several studies demonstrated that such low-

dimensional latent feature representations can be learned from

data using flexible machine learning tools, such as deep net-

works, and that they outperform handcrafted features (McIntosh

et al., 2016; Lehky et al., 1992; Lau et al., 2002; Prenger et al.,

2004; Sinz et al., 2018; Cadena et al., 2019; Antolı́k et al.,

2016; Ecker et al., 2019; Klindt et al., 2017; Zhang et al., 2019;

Kindel et al., 2019; Vintch et al., 2015; Batty et al., 2016; Pandar-

inath et al., 2018; Walker et al., 2019; Ecker et al., 2019). When

the nonlinear feature representation is shared across many neu-

rons, it can be learned from data, even though the number of pa-

rameters in the nonlinear network might be too large to be

reasonably learned from single neurons. Some of the studies

simultaneously predict thousands of neurons with less than

100 hidden feature dimensions (Sinz et al., 2018; Ecker et al.,

2019; Cadena et al., 2019; Klindt et al., 2017). Sinz et al. (2018)

also showed that the nonlinear feature representation general-

izes beyond the natural stimuli on which it was trained, success-

fully predicting neuronal responses to noise stimuli.

Another strong test that the features learnedbydeeppredictive

models characterize neuronal responseswell is that thesemodels

canalsobeused togeneratenew stimuli that stronglydrive the re-

sponses of biological neurons. Two recent studies independently

developed a novel closed-loop experimental paradigm—called

‘‘inception loops’’—combining in vivo recordings with in silico

nonlinear response modeling (Walker et al., 2019; Figure 5 in

Bashivan et al., 2019). The authors trained deep learning models

based on shared representations F to accurately predict the re-

sponses of a group of neurons to natural input. Subsequently,

they used these models to synthesize stimuli for driving the

response of selected model neurons as strongly as possible

(Figure 5A). When they showed these images back to the respec-

tive biological neurons in subsequent experiments, the neurons

indeed responded more strongly to the synthesized images

than toanumberof control stimuli, indicating that themodels cap-

ture essential elements of nonlinear neural representations.

Regarding (2), a recent line of work demonstrated that

neuronal activity in monkeys and humans can also be accurately

predicted when featuresF are derived from deep networks pre-

trained on machine learning tasks such as object classification

on ImageNet (Yamins et al., 2014; Cadieu et al., 2014; Khaligh-

Razavi and Kriegeskorte, 2014; Hong et al., 2016; Yamins and

DiCarlo, 2016; Cadena et al., 2019; G€uçl€u and van Gerven,

2014; Cichy et al., 2016; Agrawal et al., 2014). Several of these

studies also showed that there is a strong correlation between

the depth of the best predicting layer in the artificial neuronal

network and the depth of the predicted neuronal area in the vi-

sual hierarchy. Additionally, there is a strong correlation between

how well a neural network performs on a classification task and

how well some of its nonlinear features predict neuronal activity

(Yamins et al., 2014; Yamins and DiCarlo, 2016). This is evidence

that neuronal feature spaces F are related to good features for

machine learning tasks.

Empirical validationof the neuronal co-training hypothesis likely

needs massive amounts of neuronal data from different areas re-

cordedduringbehavior. It will also be important to develop careful

null hypotheses and control experiments for assessing whether

neuronal data can bias deep networks toward a new generation
Neuron 103, September 25, 2019 973



A B Figure 5. Example of Synthesizing Optimal
Stimuli Using Deep System Identification
Models
In a so-called ‘‘inception loop,’’ predictive models
can be tested back in the brain (Walker et al., 2019).
(A) Schematic of one inception loop. First, a neural
network model is trained to match observed re-
sponses to diverse inputs (green). Next, stimuli are
designed based on the trained model to optimize a
target objective function (black), such asmaximizing
the activity of a target neuron. Finally, these ‘‘Most
Exciting Inputs’’ (MEIs) are presented back to the
brain to test and/or refine the model predictions
about neural responses.
(B) Diverse examples of MEIs for different neurons.
The MEIs are optimized for a descriptive model of
mouse V1 and produce stronger responses in target
neurons than receptive fields, matched Gabor fil-
ters, or selected natural images (Walker et al., 2019).
For an alternative approach to finding MEIs, see
Ponce et al. (2019).
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of more robust and better generalizing learning machines. Some

early reports used fMRI data to constrain deep neural networks

(Fong et al., 2018), but it remains to be shown whether and how

co-training with neuronal data will increase the generalization of

the algorithms beyond their training data domain.

3.3. Copying Structure from Biology

Another way to introduce a bias in the class of networks is

through the choice of architectures (such as convolutionality),

nonlinearities, and learning algorithms (Figure 6). On a macro-

scale, the brain has many specialized modules, such as the hip-

pocampus, thalamus, and basal ganglia, that have their own

specialized connectivities and interactions. We currently do

not know enough about all the functions of the different mod-

ules within the entire brain, and machine learning currently

focuses mostly on tasks that are attributed to single modules

(e.g., the cortical visual system). Therefore, the possible advan-

tage of factorizing large networks into modules according to

this network structure remains unknown, although some work

has started to explore such motifs as memory modules (Weston

et al., 2014; Graves et al., 2014) or elements akin to voluntary

eye movements or attention (Jaderberg et al., 2015; Mnih

et al., 2014; Vaswani et al., 2017). On a micro- and mesoscale,

aspects of artificial neural networks have been inspired by bio-

logical networks, using such properties as normalization,

winner-takes-all mechanisms like max pooling (Riesenhuber

and Poggio, 1999), attention (Larochelle and Hinton, 2010),

dropout (Srivastava et al., 2014), or even merely neurons as

basic computational elements. However, despite this inspira-

tion, there are also many clear differences between neuronal

networks in vivo and in silico: almost every artificial neuron in

the machine learning literature is modeled as a point neuron

described by a scalar nonlinear function (ReLU, ELU, sigmoid,

etc.) of a linear projection of its inputs. Slightly greater

complexity is afforded by long short-term memory units and
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gated recurrent units, which also provide

gating nonlinearities (Hochreiter and

Schmidhuber, 1997; Chung et al., 2014).

Real neurons are vastly more complex
machines, with nonlinear interactions within and between

different branches of their dendrites (London and H€ausser,

2005). They thus embody their own miniature neural network

within a single neuron (Poirazi et al., 2003).

Not only does the brain have more complex neural units, it has

a reliably intricate circuit structure on multiple spatial scales.

Cortical microcircuits comprisemany genetically and functionally

distinct cell types (Douglas and Martin, 1991; Jiang et al., 2015)

that may perform operations like gating, homeostatic regulation,

divisive normalization, and more sophisticated operations. In

contrast, microcircuits in conventional neural networks use

weighted sums and max pooling or pairwise multiplication and

often even skip over the nonlinearities (He et al., 2016). Most arti-

ficial networks for static data use a feedforward architecture. For

temporal data like speech and natural language processing,

recurrent networks have been explored much more extensively,

but feedforward architectures often achieve state-of-the-art

performance. In contrast, the brain has a rich recurrent structured

connectivity both locally within a cortical area and at the largest

scale. This recurrence can be viewed as effectively making

the network deeper, but with fewer parameters: the recurrent

network can be unrolled to create an equivalent feedforward

networkwithweights shared across layers. Although this unrolled

network is less expressive than a networkwith the same architec-

ture and depth but with untied weights, the reduced expressivity

might also prove to be a useful inductive bias.

Adding more biologically plausible mechanisms into neuronal

networks at the microscale would be a better model of biology,

but it is unlikely that networks made from biologically plausible

units or microcircuits would be limited in terms of what functions

they can realize (Tripp and Eliasmith, 2016; Parisien et al., 2008):

such networks may also be universal function approximators.

Thus, the bias from merely using biological components alone

could be weak. At the same time, changes in the architecture



Figure 6. Core Properties of Some Traditional Artificial Neural Networks Compared to Those for Biological Neural Networks
Images from Szegedy et al. (2015), Böttger et al. (2014), and Gerber et al. (2016).
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and the mechanisms of artificial neuronal networks can make a

substantial difference in performance, even if the network archi-

tectures are randomly generated (Xie et al., 2019). For instance,

residual networks (ResNets) (He et al., 2016) train substantially

better on many tasks than standard sequential deep networks

even though the only difference between them is additional

shortcuts between early and later layers. But here again, the

set of functions that can be realized by ResNets and sequential

deep networks are very similar. The relevant difference thus

lies in the interaction between loss, architecture, and

learning rule.

Since the set of achievable input-output functions largely over-

laps for different architectures, one can think of architectures as

different parameterizations of a similar class of functions.
Learning in neural networks corresponds to moving along a tra-

jectory in the space of network parameters. This trajectory is

determined by the input data and the learning rule. In artificial

neural networks, this learning rule is usually to follow the negative

gradient of an objective function (Marblestone et al., 2016) using

stochastic gradient descent. Changing the parameterization

changes the way the learning rule interacts with the parameters.

Consequently, the optimization process largely determines the

inductive bias, and changes in the mechanisms or architecture

must be analyzed in conjunction with the learning rule. The regu-

larizing influence of the learning rule on the performance of

neuronal networks is currently an active area of research in ma-

chine learning. Biological learning rules so far have not played an

important role in training networks to high performance
Neuron 103, September 25, 2019 975
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(Bartunov et al., 2018). This might again be because of a

mismatch between architecture and learning rule or because

biological learning is so hard to study experimentally that current

models of biological learning rules are inadequate.

Another consideration is that the amount of learning that oc-

curs in the brain, in particular in early stages of sensory process-

ing, might be limited (Zador, 2019). One line of evidence for this

latter argument is that many animals already perform quite com-

plex behaviors well, right from birth. This suggest that develop-

mental processes, acquired through the course of evolution,

provide a good initialization that can be efficiently fine-tuned

with experience (Zador, 2019).

In summary, even if the architecture and elements of networks

might not constrain the set of realizable functions, they do influ-

ence which function is found when learning from limited data.

This means that the inductive bias of architectural elements is

strongly coupled to the learning rule. Because we still know

very little about biological learning in large networks or the devel-

opmental processes that initialize neuronal architectures, intro-

ducing inductive biases by building detailed biologically plau-

sible neuronal networks seems challenging.

Instead, compact descriptions of the nonlinear feature space

that most effectively identify a neural system directly reflects

the model bias in the brain’s neural networks. We thus propose

to identify better inductive biases by functionally constraining

artificial networks through multi-task training, using the output

layers of a neural network to achieve behavioral goals while

matching intermediate layers to large-scale single-cell data

from neurophysiological recordings.

4. Conclusion
The history of more than 60 years of AI research is still marked by

Moravec’s paradox. For decades, computers have been able to

outperform us in abstract but closely circumscribed situations,

such as playing chess. However, tasks that our brain solves sub-

consciously and effortlessly, like grasping, navigation, and scene

understanding, turn out to be hard to teach to machines. Brains

have been evolving to accomplish feats of subconscious intelli-

gence for much longer than to solve tasks we usually consider

more difficult (e.g., cognitive behaviors depending on frontal

lobes) as these feats already provide fitness for many animals.

Thus, it is not surprising that this subconscious intelligence in

biological systems is more difficult to match than symbolic

reasoning. Building learning machines that are as flexible and

versatile yet as robust and strongly generalizing as mammalian

brains is the major challenge in machine learning for the next

years to come. Here, we described some ways in which brains

themselves could help advance AI by building new bridges be-

tween neuroscience and machine learning.

The limitation of current deep networks is not the lack of

expressive power (i.e., the diversity and complexity of functions

they can express). Instead, deep networks are limited because

they lack the right inductive bias. Even shallow neural networks

are powerful enough to express any well-behaved function (Cy-

benko, 1989). Although shallow universal function approxima-

tors might require a much larger number of neurons than deep

networks, empirical studies suggest that they can approximate

similar functions with a similar number of parameters (Ba and
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Caruana, 2014). The problem is rather that training shallow net-

works is difficult. With increasing complexity of a network class,

the number of networks that fit a given finite dataset grows as

well. The challenge is then to choose a learning algorithm with

a good inductive bias that selects networks out of that large

set of possible candidates that generalize well to unseen data.

The current success of deep networks derives from the inductive

bias implicit in the combination of both the network architecture

(such as convolutionality) and the learning rule based on sto-

chastic gradient descent (backpropagation).

However, while the trained networks predict well for test sam-

ples drawn from the same distribution as training data, they use

different decision strategies than humans and are much less

robust to changes in input statistics that brains easily handle.

To match this ability with artificial neural networks, we must

improve the inductive bias of current deep networks. We dis-

cussed three possible approaches to achieve this: training

each network to solvemany behavioral tasks at once, co-training

machine learning algorithms to match the brain’s latent repre-

sentations observed in neurophysiological data, and choosing

a specific network architecture or weight-sharing scheme

together with the right learning rule.

The last 10 years in neuroscience have witnessed a surge of

new technologies that enable us to measure and analyze brain

circuits in ways that we could only dream about until now. We

can now record chronically from many thousands of neurons

simultaneously (Sofroniew et al., 2016; Jun et al., 2017) and deci-

pher their wiring diagram at the level of billions of synapses. The

MICrONS project, funded by IARPA, is a collaboration between

several institutions (http://http://www.ninai.org/) that has re-

corded 105 neurons in onemouse and used electronmicroscopy

to measure nanoscale synaptic connectivity over a 1 mm3 vol-

ume. We now have tools both to map the functional organization

of the mammalian brain at an unprecedented level of detail and

to manipulate activity with cellular localization and millisecond

precision in behaving animals. In order to make sense of this

deluge of data, neuroscience needs to develop new methods

to link neuronal representations and architectural features to

the collection of complex tasks a brain solves every day.

Deep learning can provide a framework to integrate these

diverse experimental observations into one common model.

Careful analysis from computational neuroscience and machine

learning should continually expose the differences between bio-

logical and AI through new benchmarks, allowing us to refine the

models. With experiments that probe the mechanisms of the

brain’s inductive biases and analyses that identify the key prop-

erties that manifest those biases, neuroscience and machine

learning together can help build the next generation of artificial

intelligence.
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