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Complex behaviors are often driven by an internal model, which integrates sensory information over time and facilitates long-term planning to
reach subjective goals. We interpret behavioral data by assuming an agent behaves rationally — that is, they take actions that optimize their
subjective reward according to their understanding of the task and its relevant causal variables. We apply a new method, Inverse Rational
Control (IRC), to learn an agent’s internal model and reward function by maximizing the likelihood of its measured sensory observations and
actions. This thereby extracts rational and interpretable thoughts of the agent from its behavior. We also provide a framework for interpreting
encoding, recoding and decoding of neural data in light of this rational model for behavior. When applied to behavioral and neural data
from simulated agents performing suboptimally on a naturalistic foraging task, this method successfully recovers their internal model and
reward function, as well as the computational dynamics within the neural manifold that represents the task. This work lays a foundation for
discovering how the brain represents and computes with dynamic beliefs.
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Understanding how the brain works requires interpreting neural
activity. The behaviorist tradition (1) aims to understand the brain
as a black box solely from its inputs and outputs. Modern neu-
roscience has been able to gain major insights by looking inside
the black box, but still largely relates measurements of neural ac-
tivity to the brain’s inputs and outputs. While this is the basis of
both sensory neuroscience and motor neuroscience, most neural
activity supports computations and cognitive functions that are
left unexplained — we might call these functions ‘thoughts’. To
understand brain computations, we should relate neural activity to
thoughts. The trouble is, how do you measure a thought?

Here we propose to model thoughts as dynamic beliefs that we
impute to an animal, by combining explainable Artificial Intelligence
(Al) cognitive models for naturalistic tasks with measurements of
the animal’s sensory inputs and behavioral outputs. We define an
animal’s task by the relevant dynamics of its world, observations it
can make, actions it can take, and the goals it aims to achieve. The
Al models that solve these tasks generate beliefs, their dynamics,
and actions that reflect the essential computations needed to solve
the task and generate behavior like the animal. With these esti-
mated thoughts in hand, we propose an analysis of brain activity
to find neural representations and transformations that potentially
implement these thoughts.

Our approach combines the flexibility of complex neural network
models while maintaining the interpretability of cognitive models.
It goes beyond black-box neural network models that solve one
particular task and find representational similarity with the brain
(2—4). Instead, we solve a whole family of tasks, and then find
the task whose solution best describes an animal’s behavior. We
then associate properties of this best-matched task with the an-
imal's mental model of the world, and call it ‘rational’ since it is
the right thing to do under this internal model of the world. Our
method explains behavior and neural activity based on underlying

latent variable dynamics, but it improves upon usual latent variable
methods for neural activity that just compress data without regard
to tasks or computation (5, 6). In contrast, our latent variables
inherit meaning from the task itself, and from the animal’s beliefs
according to its internal model. This provides interpretability to
both our behavioral and neural models.

We also want to ensure we can explain crucial neural compu-
tations that underlie ecological behavior in natural tasks. We can
accomplish this by using tasks with key properties that ensure our
model solutions implement these neural computations. First, a
natural task should include latent or hidden variables: animals do
not act directly upon their sensory data, as that data is merely
an indirect observation of a hidden real world (7). Second, the
task should involve uncertainty, since real-world sense data are
fundamentally ambiguous and behavior improves when weighing
evidence according to its reliability. Third, the relationships be-
tween latent variables and sensory evidence should be nonlinear
in the task, since if linear computation were sufficient then animals
would not need a brain: they could just wire sensors to muscles
and compute the same result in one step. Fourth, the task should
have relevant temporal dynamics, since actions affect the future,
and useful properties of the world change; animals must account
for this.

While natural tasks that animals perform every day do indeed
have these properties, most neuroscience studies isolate a subset
of them for simplicity. Although this has revealed important aspects
of neural computation, it also potentially misses some of the funda-
mental structure of brain computation. Recent progress warrants
increasing the naturalism and complexity of the tasks and models.

One major challenge for practical studies with increased com-
plexity and naturalism is to record from many neurons with enough
spatial and temporal precision to reveal the relevant computational
dynamics for these tasks. Specifically, the dimensionality of neu-
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ral data needs to be bigger than the dimensionality of our target
tasks (8). Modern neurotechnology now affords us this opportunity:
brain-wide calcium imaging at cellular resolution and fine-grained
electrophysiological recording can record from thousands of neu-
rons simultaneously at high frequency. Limited experimental time
and coverage still hinder our ability to explore the neural representa-
tions. But with current large-scale neural data, we will increasingly
have enough power to find neural representations and dynamics
in naturalistic and cognitively interesting tasks.

This paper makes progress towards understanding how the
brain produces complex behavior by providing methods to estimate
thoughts and interpret neural activity. We first describe a model-
based technique we call Inverse Rational Control for inferring latent
dynamics which could underlie rational thoughts. Then we offer
a theoretical framework about neural coding that shows how to
use these imputed rational thoughts to construct an interpretable
description of neural dynamics.

We illustrate these contributions by analyzing a task performed
by an artificial brain, showing how to test the hypothesis that a neu-
ral network has an implicit representation of task-relevant variables
that can be used to interpret neural computation. We choose an
ecologically relevant foraging task that requires sensitivity to past
rewards, current observations, and an internal memory state. Our
approaches should serve as valuable tools for interpreting behavior
and brain activity for real agents performing naturalistic tasks.

Results

Modeling behavior as rational. In an uncertain and partially ob-
servable environment, animals learn to plan and act based on
limited sensory information and subjective values. To better un-
derstand these natural behaviors and interpret their neural mech-
anisms, it would be beneficial to estimate the internal model and
reward function that explains animals’ behavioral strategies. In
this paper, we model animals as rational agents acting optimally
to maximize their own subjective rewards, but under a family of
possibly incorrect assumptions about the world. We then invert this
model to infer the agent’s internal assumptions and rewards and
estimate the dynamics of internal beliefs. We call this approach
Inverse Rational Control (IRC), because we infer the reasons that
explain an agent’s suboptimal behavior to control its environment.
This method creates a probabilistic model for an agent’s trajec-
tory of observations and actions, and selects model parameters
that maximize the likelihood of this trajectory. We make assump-
tions about the agent’s internal model, namely that it believes that
it gets unreliable sensory observations about a world that evolves
according to known stochastic dynamics. Finally, we assume that
the agent’s actions are chosen to maximize its own subjectively
expected long-term utility. This utility includes both benefits, such
as food rewards, and costs, such as energy consumed by actions;
it should also account for internal states describing motivation,
like hunger or fatigue, that modulate the subjective utility. We
then use the agent’s sequence of observations and actions to
learn the parameters of this internal model for the world. With-
out a model, inferring both the rewards and latent dynamics is an
underdetermined problem leading to many degenerate solutions.
However, under reasonable model constraints, we demonstrate
that the agent’s reward functions and assumed dynamics can be
identified. Our learned parameters includes the agent’s assumed
stochastic dynamics of the world variables, the reliability of sensory
observations about those world states, and subjective weights on
action-dependent costs and state-dependent rewards.
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Partially Observable Markov Decision Process. To define the Inverse
Rational Control problem, we first formalize the agent’s task as
a Partially Observable Markov Decision Process (POMDP, Fig-
ure 1A) (9), a powerful framework for modeling agent behavior
under uncertainty. A Markov chain is a temporal sequence of
states s € S for which the transition probability 7" to the next
state depends only on the current state, not on any earlier ones:
T(st+1]50:t) = T(se+1]s¢). A Markov Decision Process (MDP) is
a Markov chain where at each time an agent can influence the
world state transitions by deciding to take an action a € A, ac-
cording to T'(s:+1|s¢, a¢). At each time step the agent receives
a reward or incurs a cost (negative reward) that depends on the
world state and action, R(s:, a:). The agent’s goal is to choose ac-
tions that maximize its value V', measured by total expected future
reward (negative cost) with a temporal discount factor v € (0, 1),
so that V = <Zfi1VtR(st’“t)>p(51, w1, The actions are
drawn from a state-dependent probabiliatoj distribution called a pol-
icy, w(alst), which may be concentrated entirely on one action or
may have some width. In a normal MDP, the agent can fully ob-
serve the current world state, but must plan for an unknown future.
In a Partially Observed MDP (POMDP), the agent again does not
know the future, but does not even know the current world state
exactly. Instead the agent only gets unreliable observations o € 2
about it, drawn from the distribution o, ~ O(o|s;). The agent’s goal
is the same, to maximize the total expected temporally-discounted
future reward. The POMDP M is then a tuple of all of these math-
ematical objects: M = (S, A,Q, R, T, O, ). Different POMDPs
tuples reflect different tasks.

A Partially Observable Markov Decision Process
(POMDP)
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Fig. 1. Graphical model of a Partially Observable Markov Decision Process (POMDP)
(A) and the Inverse Rational Control (IRC) problem (B). Empty circles denote latent
variables, and solid circles denote observable variables. For the POMDP, the agent
knows its beliefs but must infer the world state. For IRC, the scientist knows the world
state but must infer the beliefs. The real world dynamics depends on parameters
¢, while that of the agent assumes parameters 6 which include both its assumption
about the stochastic world dynamics and its own subjective rewards and costs.
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Optimal solution of a POMDP requires the agent to com-
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pute a time-dependent posterior probability over the possible
current world state, given its history of observations and ac-
tions. All of that history can be summarized concisely in a sin-
gle distribution, the posterior B. It is useful to define a belief
state b as completely summarizing the posterior, so we can write
B(st|bt) = B(st|o1:t,a0:¢—1). This belief state can be expressed
recursively using the Markov property as a function of its previous
value (Supplemental Information):

b= 2 O0(oulse) (T(selsi1,a0-1)) 8

st—1|bt—1

where Z is a normalization constant.”

We can express the entire partially observed MDP as a fully-
observed MDP called a Belief MDP, where the relevant fully-
observed state is not the world state s but instead the agent’s own
belief state b (10). To do so, we must re-express the transitions and
rewards as a function of these belief states, T(bs+1 bz, 0141, at)
and R(b:, a:), as described in the Supplemental Information.

The optimal agent then determines a value function Q(b, a) over
this belief space and allowed actions, based on its own subjective
rewards and costs. This value can be computed recursively through
the Bellman equation (11)

Q(bt,at) = R(bs,ar)+ [2]
7//dat+1dbt+1 T(beya]be, ar)m(aes1]ber1)Q(bey1, aryr)

The optimal policy deterministically selects whichever action
maximizes the value Q(b,a). An alternative stochastic pol-
icy samples from a softmax function over actions, 7(alb) ~
= exp (Q(b, a) /T)with a temperature parameter T and normaliza-
tion constant Z. The randomness introduces a new sub-optimality
to the agent: instead of choosing the action with the maximal value,
the agent has some chance of choosing a worse action. In the limit
of a low temperature 7 we recover the optimal policy, but a real
agent may be better described by a stochastic policy with some
controlled exploration.

Inverse Rational Control. Despite the appeal of optimality, animals
rarely appear optimal in experimentally defined tasks, and not just
by exhibiting more randomness. Short of optimality, what principled
guidance can we have about an animal’s actions that would help us
understand its brain? One possibility is that an animal is ‘rational’
— that is, optimal for different circumstances than those being
tested. In this section we present a behavioral analysis based on
the possibility that agents are rational in this sense. The core idea
is to parameterize possible strategies of an agent by those tasks
under which each is optimal, and find which of those best explains
the behavioral data.

We specify a family of POMDPs where each member has its
own task dynamics, observation probabilities, and subjective re-
wards, together constituting a parameter vector 6. These different
tasks yield a corresponding family of optimal agents, rather than a
single optimized agent. We then define a log-likelihood over the
tasks in this family, given the experimentally observed data and
marginalized over the agent’s latent beliefs (Figure 1B):

5(9) = 10g/db1:Tp(b1:T701:T,a1:T751:T‘97¢) [3]

“A minor notational point is that we assume that the agent is a function of the belief state, ei-
ther because it is a deterministic function of the belief or because the stochastic output action is
fully observed or appended to the belief state. Then we can write B(s¢|o¢, at—1,bp—1) =
B(st|ot, by—1). This justifies the omission of an arrow in Figure 1A from a;_1 — b¢. Alter-
natively we can allow the action to be partially observable and add another arrow to that figure.
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In other words, we find a likelihood over which tasks an agent
solves optimally. In [3] ¢ are known parameters in the experimental
setup that determine the world dynamics. Since they only affect
observed quantities in the graphical model, they do not affect the
model likelihood over 6 (Supplementary Information).

This mathematical structure connects interpretable models di-
rectly to experimentally observable data. We can now formalize
important scientific problems in behavioral neuroscience. For ex-
ample, we can maximize the likelihood to find the best interpretable
explanation of an animal’s behavior as rational within a model class,
as we show below. We can also compare categorically different
model classes that attribute to the agent different reward structures
or assumptions about the task.

The log-likelihood [3] seems complicated, as it depends on the
entire sequence of observations and actions and requires marginal-
ization over latent beliefs. Nonetheless it can be calculated using
the Markov property of the POMDP: the actions and observations
constitute a Markov chain where the agent’s belief state is a hidden
variable. We show that it is possible to exploit this structure to
compute this likelihood efficiently (Supplemental Information).

Challenges and solutions for rationalizing behavior. To solve the IRC
problem, we need to parameterize the task, beliefs, and policies,
and then we need to optimize the parameterized log-likelihood
to find the best explanation of the data. This raises practical
challenges that we need to address.

Our core idea for interpreting behavior is to parameterize ev-
erything in terms of tasks. All other elements of our models are
ultimately referred back to these tasks. Consequently, the beliefs
and transitions are distributions over latent task variables, the pol-
icy is expressed as a function of task parameters and preferences,
and the log-likelihood is a function of the task parameters that we
assume the agent assumes.

Thus, whatever representations we use for the belief space
or policy, we need to be able to propagate our optimization over
the task parameters through those representations. This is one
requirement for practical solutions of IRC. A second requirement is
that we can actually compute the optimal policies.

Efficient representation of general beliefs and transitions is hard
since the space of probabilities is much larger than the state space
it measures. The belief state is a probability distribution and thus
takes on continuous values even for discrete world states. For
continuous variables the space of probabilities is potentially infinite-
dimensional. This poses a substantial challenge both for machine
learning and for the brain, and finding neurally plausible represen-
tations of uncertainty is an active topic of research (12—-17). We
consider two simple methods to solve IRC using lossy compression
of the beliefs: discretization, or distributional approximation. We
then provide a concrete example application in the discrete case.

Discrete beliefs and actions. If we have a discrete state space
then we can use conventional solution strategies for Markov De-
cision Processes. For a small enough world space, we can ex-
haustively discretize the complete belief space, and then solve the
Belief MDP problem with standard MDP algorithms (11, 18). In
particular, the state-action value function Q(b, a) under a softmax
policy 7(a|b) can be expressed recursively by a Bellman equa-
tion, which we solve using value iteration (10, 11). The resultant
value function then determines the softmax policy 7, and thereby
determines the policy-dependent term in the log-likelihood [3].

Finally, to solve the IRC problem we can directly optimize this
log-likelihood, for example by greedy line search (Supplementary
Information). An alternative in higher-dimensional problems is
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to use Expectation-Maximization to find a local optimum, with a
gradient ascent M-step (Supplementary Information, (19, 20)). To
compute the gradient of the log-likelihood, we again use recursion
to calculate the value gradient Q) /96 exactly, and use the chain
rule to derive the policy gradient and then the Q auxiliary function
gradient (Supplementary Information).

Continuous beliefs and actions. The computational expense of
the discrete solution grows rapidly with problem size, and become
intractable for continuous state spaces and continuous controls.
A practical choice is to approximate posteriors by a finite set of
summary statistics, and update them by a method like expecta-
tion propagation (21). The simplest example is to use quadratic
statistics, i.e. Gaussian posterior. This belief state can then be
updated according to an extended Kalman filter that accounts for
the agent’s internal model of the stochastic nonlinear dynamics.For
more general belief representations, the belief update equations
may require additional flexibility.

Rational control with continuous actions also requires us to
implement a family of continuous policies 7 that map from beliefs
to actions. We use deep neural networks to implement these
policies (22) through an actor-critic method (Deep Deterministic
Policy Gradient, (23)), by which one ‘critic’ network estimates the
value of each action taken by the ‘actor’ network.

Deep learning methods are commonly used in reinforcement
learning to provide flexibility, but they lack interpretability: informa-
tion about the policy is distributed across the weights and biases of
the network. Crucially, to maintain interpretability, we parameterize
this family by the task. Specifically, we provide the model parame-
ters as additional inputs to a policy network, and learn the optimal
policies simultaneously over a prior distribution on task parame-
ters p(0) (22). This allows the network to generalize its optimal
strategies across POMDPs in the task family. It also allows us to
compute policy gradients simply using auto-differentiation, which
we exploit when optimizing the log-likelihood to find the parameters
that best match for an agent’s behavior.

Ultimately, after optimizing the log-likelihood for either discrete
or continuous representations, the end result is a set of parameters
0 that best explain the observed behavioral data, and define the
agent’s assumed internal task model and subjective preferences.
Within this model class, we have therefore found the best rational
explanation for the agent’s behavior.

Finding a neural code for rational thoughts. We don’t presume
that any real brain explicitly calculates a solution to the Bellman
equation, but rather learns a policy by combining experience and
mental modeling. With enough training, the result is an agent that
behaves ‘as if’ it were solving the POMDP (Figure 2A).

If an animal’s behavior is well-described as depending on latent
beliefs, as we assume in Inverse Rational Control, then it makes
sense that we should find neural correlates of these beliefs in the
brain. If we can find such correlates, does this mean that the
neurons encode or represent those beliefs? Some have argued
that the notion of a neural code is a poor metaphor because it
captures neither the causal or mechanistic structure of the brain,
nor its relation to actions and affordances (24—26). For example,
it may be that the brain does not use the neural signals that a
neuroscientist can use to extract information about a task.

In contrast, here we argue instead that the linked processes
of encoding, recoding, and decoding can be a useful way of ex-
plaining task-relevant computation in the brain at the algorithmic
or representational level (27). The brain’s ‘encoding’ specifies how
neural activity can be used to estimate task variables (Figure 2B),
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including both rewarded variables and irrelevant or nuisance ones
that must be disentangled from them. ‘Recoding’ describes how
that encoding is transformed over time and space by neural pro-
cessing (Figure 2C). ‘Decoding’ describes how those estimates
predict future actions (Figure 2D).

(Inour use of these terms, we are taking the brain’s perspective.
The term ‘decoding’ more often reflects the scientist’s perspective,
where the scientist decodes brain activity to estimate encoding
quality. Instead, we reserve the term decoding to describe how
neural activity affects actions: we say that the brain decodes its
own activity to generate behavior.)

A Neural implementation of POMDP
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Fig. 2. Schematic for analyzing a dynamic neural code. (A) Graphical model of a
POMDP problem with a solution implemented by neurons implicitly encoding beliefs.
(B) We find how behaviorally relevant variables (here, beliefs) are encoded in mea-
sured neural activity through the function by = @enc(Tt). (C) We then test our
hypothesis that the brain recodes its beliefs rationally by testing whether the dynamics
of the behaviorally estimated belief b match the dynamics of the neurally estimated
beliefs b, as expressed through the update dynamics fayn (b, 0+) and recoding
function frec(5t7 0¢). (D) Similarly, we test whether the brain decodes its beliefs
rationally by comparing the behaviorally and neurally derived policies #act and ftqec-
Quantities estimated from behavior or from neurons are denoted by up-pointing or
down-pointing hats, " and ~ (Table S1).

This level of explanation need not capture every facet of neural
responses nor the mechanism by which they evolve. Obviously it
cannot explain responses to untested task variables. Nonetheless,
it would be great progress if we can account for stimulus- and
action-dependent neural dynamics within a task-relevant submani-
fold (28) that explains how pieces of information interact and predict
behavior. Although this ‘as-if’ description cannot legitimately claim
to be causal, it can be promoted to a causal description since it
does provide useful predictions for causal tests about what neural
features should influence computation and action (29, 30).

Next we describe the general structure of such a representation-
level explanation. We then follow this approach to analyze an
artificial brain performing a specific foraging task.

To begin the analysis, we propose to use Inverse Rational
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Control to construct a behavioral model from the sensory inputs
and actions that we observe the agent makes. The inferred internal
model allows us to impute the agent’s time-dependent beliefs b
about the partially observed world state s. Such a belief vector
might include full posterior over the world state, B(s¢|o1:¢, a1:t—1)
as we used for the discrete IRC above, or a point estimate 5 of the
world state and a measure of uncertainty about it, say a covariance
3s, as in the Gaussian approximation we used for continuous IRC.
To us, as scientists, the agent’s beliefs are latent variables, so our
algorithm can at best create a posterior p(b) over those beliefs,
or a point estimate b indicating the most probable belief. Here
we will base our analyses on a point estimate over beliefs. First
we will describe the general approach, and then we will apply this
approach in an example analysis.

Encoding. First we aim to find the brain’s encoding of the beliefs
about latent variables. Specifically, we look for neural correlates of
the estimate b of the agent's beliefs that we inferred by IRC.

While there is little doubt that real behavior is influenced by
uncertainty (31-34), it remains unclear how uncertain beliefs that
influence actions are encoded by the brain. These beliefs could
be represented in the brain in a multitude of ways,and resolving
this question is an active topic of current research. One reason it
is hard to make progress on this topic is that we cannot measure
the agent’s beliefs directly, except by assuming optimal inferences.
IRC gives us a way to estimate suboptimal beliefs, so we can
examine how the brain represents them.

Given beliefs b imputed by IRC, we can estimate how they
are encoded in the neural responses r using a (potentially non-
linear, potentially spatiotemporal) readout function @enc (). This
can be accomplished by minimizing an encoding loss such as
Lene = Y, Lene [bt, Penc(r1)] where at each time £ene measures

the distance between the behavioral target belief b; and the neu-
ral estimate b; = ponc(r¢) (Figure 2B). After training penc Using
the behavioral targets 5, we can then cross-validate it on new
estimates b from fresh neural data. (Estimates based on the be-
havioral model are consistently denoted by an up-pointing hat, z,
as distinguished from estimates based on the neural responses
denoted by a down-pointing hat, &, as indicated in Table S1.)

Recoding. While neural dynamics may affect every dimension of
neural activity, we focus only on the interpretable dynamics within
the lower-dimensional task manifold. By construction, those dy-
namics reflect the changes in the agent’s beliefs.

The rational control model predicts that beliefs are updated
by sensory observations and past beliefs, with interactions that
are determined by the internal model according to a function
bit+1 = fayn(be, 0¢) + ne where fayn and 7, reflect the determin-
istic and stochastic parts of the dynamics. If our neural analysis
correctly identifies dynamics responsible for behavior, then the be-
liefs b estimated from the neural encoding should be recoded over
time following those same update rules. We estimate this neural
recoding function frec(lv)t, o¢) directly from the sequence of neurally
estimated beliefs b by minimizing a recoding prediction loss, such
as Lrec = Y, lree [be11, frec(br, 01)] Where fyec penalizes differ-
ences between the actual and predicted future beliefs. We then
compare frec to the update dynamics posited by the behavioral
model fdyn (Figure 2C). (We should compare these only over the
distribution of experienced beliefs, i.e. those beliefs for which the
recoding function matters in practice.) Agreement between these
recoding functions implies that we have successfully understood
the ‘recoding’ process. Even for good encoding models this is
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not guaranteed, since activity outside the encoding manifold could
influence the neural dynamics.

The encoding dimensions may seem to change over time or
context (2, 35). Perhaps this too should count as recoding, such
that our approach of estimating beliefs from neural activity using a
nonadaptive function wenc(r) would then miss important computa-
tions. However, this only indicates that our way of measuring the
encoding is too limited. The real encoding model could be fixed
but nonlinear (36), and can appear adaptive when measured by
an inadequate model (37). More complex functions are harder to
fit but the brain’s neural code may require this added complexity.

Decoding. These encodings and recodings do not matter if the
brain never decodes that information into behavior. We can
evaluate how the brain uses this information by predicting ac-
tions from the neurally encoded beliefs, minimizing a decod-
ing loss between observed actions and distribution of actions
a predicted from neurally estimated belief by the policy fr(d|l3):
Lace = Y, Lace [a1, Face(@lbr) | where £ac. penalizes actions that
are unexpected according to the given policy. We then test the hy-
pothesis that the brain decodes neurally encoded rational thoughts
by comparing the neurally-derived policy 7tq.c against the behav-
ioral policy, act (Figure 2D).

Application to Foraging. We applied our analyses to understand
the workings of a neural network performing a foraging task. The
task requires an agent to combine unreliable sensory data with an
internal memory to infer when and where rewards are available,
and how to best acquire them. We train an artificial recurrent
neural network to solve this task in a suboptimal but rational way,
use Inverse Rational Control to infer its assumptions, subjective
preferences, and beliefs, and then analyze its neural responses to
test our coding framework.

Task description. Two locations (‘feeding boxes’) have hidden food
rewards that appear and disappear according to independent tele-
graph processes with specified transition probabilities (Figure 3,
(38)). The boxes provide unreliable color cues about the current
reward availability, ranging from blue (probably unavailable) to red
(probably available).

box 1 reward
- F availability
available? H W vl :

i travel
got reward A A

—
after push?

Foraging task

yes no

box 1 .
| ente: Agent’s
- p— center ocation

time box 2

location e

box 2 color

— oaiiabilty
availability

Fig. 3. lllustration of foraging task with latent dynamics and partially observable
sensory data. The reward availability in each of two boxes evolves according to a
telegraph process, switching between available (red) and unavailable (blue), and
colors give the animal an ambiguous sensory cue about the reward availability. The
agent may travel between the locations of the two boxes. When a button is pressed to
open a box, the agent receives any available reward.

We assume there are three possible locations for the agent: the
locations of boxes 1 and 2, and a middle location 0. We include a
small ‘grooming’ reward for staying at the middle location, to allow
the agent to stop and rest. A few discrete actions are available to
the agent: it can push a button to open a box to either get reward
or observe its absence, it can move toward a new location, or it
can do nothing. Traveling and pushing a button to open the box
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each have an associated cost. This disincentivizes the agent from
repeating fruitless actions. When a button-press action is taken
to open a box, any available reward there is acquired. Afterwards,
the animal knows there is no more food available now in the box
(since it was either unavailable or consumed) and the belief about
food availability in that box is reset to zero.

Neural network agent. We first create a rational agent that solves
a POMDP problem in this family, and then we use supervised
learning to train a nonlinear recurrent neural network to match the
belief dynamics and policy of that agent.

To create the rational agent, we discretize beliefs about reward
availability for each box into N = 10 belief states. We define
the transition matrix in the discretized belief space by binning
the continuous transition matrix T'(b;+1|b:, a:). We allow a small
diffusion between neighboring bins, which reflects dynamic belief
stochasticity. With the defined transition matrices and reward
functions for different actions for the internal model, we can solve
for the optimal softmax policy.

Figure S1A shows the architecture of our recurrent network.
After training to match the rational agent, readouts of the neural
activities closely match the POMDP agent’s beliefs and policies
(Figure S1B,C), but these task-relevant quantities are encoded
implicitly in a large population of neurons.

We then collected sensory observations and actions from the
neural network agent while it was challenged by a different task
than the one for which it was optimized (Methods). These inputs led
to a time series of observations o;, actions a:, and neural activity
r¢. Together these constitute the experimental measurements.

Inverse Rational Control for foraging. We don’t know the agent’s
assumed world parameters, nor do we know the agent’s subjec-
tive costs, nor the amount of randomness (softmax temperature).
Our goal is to estimate a simulated agent’s internal model and
belief dynamics from its chosen actions in response to its sensory
observations. We infer all of these using IRC.

The actions and sensory evidence (color cues, locations and
rewards) obtained by the agent all constitute observations for the
experimenter’s learning of the agent’s internal model. Based on
these observations over 1000 time points, including 364 move-
ments and 109 button presses, we use IRC to infer the parameters
of the internal model that can best explain the behavioral data
(Figure 4A). The comparison between the true parameters and the
estimated parameters are shown in Figure 4B.

A Log likelihood of observed data B Comparison of parameters

high
5 B agent's parameters
M cstimated parameters I
> 8

Fig. 4. Fitting internal model and subjective rewards using IRC. A: The estimated
parameters converge to the optimal point of the observed data log-likelihood. Since
the parameter space is high dimensional, we project it onto the first two principal com-
ponents u, v of the learning trajectory for 6. B: Comparison of the true parameters
of the agent and the estimated parameters.
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Data limitations imply some discrepancy between the true pa-
rameters and the estimated parameters which can be reduced with
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Fig. 5. Successful recovery of beliefs by Inverse Rational Control. A: Estimated and
true marginal belief dynamics over latent reward availability. These estimates are
informed by the noisy color data at each box and the times and locations of the agent’s
actions. The posteriors over beliefs are consistent with the dynamics of the true beliefs.
B: The averaged posteriors of the estimated beliefs b¢, & ZT p(belar.r, 01.1),
correlate strongly with the agent’s true beliefs. Inferred distributions of (C) actions, (D)
residence times, (E) intervals between consecutive button-presses, and (F) intervals
between movements.

more data. With the estimated parameters, we are able to infer a
posterior over the dynamic beliefs (Figure 5A). (Note that this is
an experimenter’s posterior over the agent’s subjective posterior!)
The inferred posterior is consistent with the agent’s true subjective
probability of the food availability in each box. The inferred distribu-
tions over beliefs reveals strong correlations between the true and
estimated belief state (Figure 5B).

Figure 5C—F shows that the artificial brain and inferred agent
choose actions with similar frequencies, occupy the three locations
for the same fraction of time, and wait similar amounts of time
between pushing buttons or travelling. This demonstrates that the
IRC-derived agent’s internal model ge