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Complex behaviors are often driven by an internal model, which integrates sensory information over time and facilitates long-term planning to
reach subjective goals. We interpret behavioral data by assuming an agent behaves rationally — that is, they take actions that optimize their
subjective reward according to their understanding of the task and its relevant causal variables. We apply a new method, Inverse Rational
Control (IRC), to learn an agent’s internal model and reward function by maximizing the likelihood of its measured sensory observations and
actions. This thereby extracts rational and interpretable thoughts of the agent from its behavior. We also provide a framework for interpreting
encoding, recoding and decoding of neural data in light of this rational model for behavior. When applied to behavioral and neural data
from simulated agents performing suboptimally on a naturalistic foraging task, this method successfully recovers their internal model and
reward function, as well as the computational dynamics within the neural manifold that represents the task. This work lays a foundation for
discovering how the brain represents and computes with dynamic beliefs.
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Understanding how the brain works requires interpreting neural
activity. The behaviorist tradition (1) aims to understand the brain
as a black box solely from its inputs and outputs. Modern neu-
roscience has been able to gain major insights by looking inside
the black box, but still largely relates measurements of neural ac-
tivity to the brain’s inputs and outputs. While this is the basis of
both sensory neuroscience and motor neuroscience, most neural
activity supports computations and cognitive functions that are
left unexplained — we might call these functions ‘thoughts’. To
understand brain computations, we should relate neural activity to
thoughts. The trouble is, how do you measure a thought?

Here we propose to model thoughts as dynamic beliefs that we
impute to an animal, by combining explainable Artificial Intelligence
(AI) cognitive models for naturalistic tasks with measurements of
the animal’s sensory inputs and behavioral outputs. We define an
animal’s task by the relevant dynamics of its world, observations it
can make, actions it can take, and the goals it aims to achieve. The
AI models that solve these tasks generate beliefs, their dynamics,
and actions that reflect the essential computations needed to solve
the task and generate behavior like the animal. With these esti-
mated thoughts in hand, we propose an analysis of brain activity
to find neural representations and transformations that potentially
implement these thoughts.

Our approach combines the flexibility of complex neural network
models while maintaining the interpretability of cognitive models.
It goes beyond black-box neural network models that solve one
particular task and find representational similarity with the brain
(2–4). Instead, we solve a whole family of tasks, and then find
the task whose solution best describes an animal’s behavior. We
then associate properties of this best-matched task with the an-
imal’s mental model of the world, and call it ‘rational’ since it is
the right thing to do under this internal model of the world. Our
method explains behavior and neural activity based on underlying
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latent variable dynamics, but it improves upon usual latent variable
methods for neural activity that just compress data without regard
to tasks or computation (5, 6). In contrast, our latent variables
inherit meaning from the task itself, and from the animal’s beliefs
according to its internal model. This provides interpretability to
both our behavioral and neural models.

We also want to ensure we can explain crucial neural compu-
tations that underlie ecological behavior in natural tasks. We can
accomplish this by using tasks with key properties that ensure our
model solutions implement these neural computations. First, a
natural task should include latent or hidden variables: animals do
not act directly upon their sensory data, as that data is merely
an indirect observation of a hidden real world (7). Second, the
task should involve uncertainty, since real-world sense data are
fundamentally ambiguous and behavior improves when weighing
evidence according to its reliability. Third, the relationships be-
tween latent variables and sensory evidence should be nonlinear
in the task, since if linear computation were sufficient then animals
would not need a brain: they could just wire sensors to muscles
and compute the same result in one step. Fourth, the task should
have relevant temporal dynamics, since actions affect the future,
and useful properties of the world change; animals must account
for this.

While natural tasks that animals perform every day do indeed
have these properties, most neuroscience studies isolate a subset
of them for simplicity. Although this has revealed important aspects
of neural computation, it also potentially misses some of the funda-
mental structure of brain computation. Recent progress warrants
increasing the naturalism and complexity of the tasks and models.

One major challenge for practical studies with increased com-
plexity and naturalism is to record from many neurons with enough
spatial and temporal precision to reveal the relevant computational
dynamics for these tasks. Specifically, the dimensionality of neu-
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ral data needs to be bigger than the dimensionality of our target
tasks (8). Modern neurotechnology now affords us this opportunity:
brain-wide calcium imaging at cellular resolution and fine-grained
electrophysiological recording can record from thousands of neu-
rons simultaneously at high frequency. Limited experimental time
and coverage still hinder our ability to explore the neural representa-
tions. But with current large-scale neural data, we will increasingly
have enough power to find neural representations and dynamics
in naturalistic and cognitively interesting tasks.

This paper makes progress towards understanding how the
brain produces complex behavior by providing methods to estimate
thoughts and interpret neural activity. We first describe a model-
based technique we call Inverse Rational Control for inferring latent
dynamics which could underlie rational thoughts. Then we offer
a theoretical framework about neural coding that shows how to
use these imputed rational thoughts to construct an interpretable
description of neural dynamics.

We illustrate these contributions by analyzing a task performed
by an artificial brain, showing how to test the hypothesis that a neu-
ral network has an implicit representation of task-relevant variables
that can be used to interpret neural computation. We choose an
ecologically relevant foraging task that requires sensitivity to past
rewards, current observations, and an internal memory state. Our
approaches should serve as valuable tools for interpreting behavior
and brain activity for real agents performing naturalistic tasks.

Results

Modeling behavior as rational. In an uncertain and partially ob-
servable environment, animals learn to plan and act based on
limited sensory information and subjective values. To better un-
derstand these natural behaviors and interpret their neural mech-
anisms, it would be beneficial to estimate the internal model and
reward function that explains animals’ behavioral strategies. In
this paper, we model animals as rational agents acting optimally
to maximize their own subjective rewards, but under a family of
possibly incorrect assumptions about the world. We then invert this
model to infer the agent’s internal assumptions and rewards and
estimate the dynamics of internal beliefs. We call this approach
Inverse Rational Control (IRC), because we infer the reasons that
explain an agent’s suboptimal behavior to control its environment.

This method creates a probabilistic model for an agent’s trajec-
tory of observations and actions, and selects model parameters
that maximize the likelihood of this trajectory. We make assump-
tions about the agent’s internal model, namely that it believes that
it gets unreliable sensory observations about a world that evolves
according to known stochastic dynamics. Finally, we assume that
the agent’s actions are chosen to maximize its own subjectively
expected long-term utility. This utility includes both benefits, such
as food rewards, and costs, such as energy consumed by actions;
it should also account for internal states describing motivation,
like hunger or fatigue, that modulate the subjective utility. We
then use the agent’s sequence of observations and actions to
learn the parameters of this internal model for the world. With-
out a model, inferring both the rewards and latent dynamics is an
underdetermined problem leading to many degenerate solutions.
However, under reasonable model constraints, we demonstrate
that the agent’s reward functions and assumed dynamics can be
identified. Our learned parameters includes the agent’s assumed
stochastic dynamics of the world variables, the reliability of sensory
observations about those world states, and subjective weights on
action-dependent costs and state-dependent rewards.

Partially Observable Markov Decision Process. To define the Inverse
Rational Control problem, we first formalize the agent’s task as
a Partially Observable Markov Decision Process (POMDP, Fig-
ure 1A) (9), a powerful framework for modeling agent behavior
under uncertainty. A Markov chain is a temporal sequence of
states s ∈ S for which the transition probability T to the next
state depends only on the current state, not on any earlier ones:
T (st+1|s0:t) = T (st+1|st). A Markov Decision Process (MDP) is
a Markov chain where at each time an agent can influence the
world state transitions by deciding to take an action a ∈ A, ac-
cording to T (st+1|st, at). At each time step the agent receives
a reward or incurs a cost (negative reward) that depends on the
world state and action, R(st, at). The agent’s goal is to choose ac-
tions that maximize its value V , measured by total expected future
reward (negative cost) with a temporal discount factor γ ∈ (0, 1),
so that V =

〈∑∞
t=1 γ

tR(st, at)
〉
p(s1:∞,a1:∞)

. The actions are
drawn from a state-dependent probability distribution called a pol-
icy, π(a|st), which may be concentrated entirely on one action or
may have some width. In a normal MDP, the agent can fully ob-
serve the current world state, but must plan for an unknown future.
In a Partially Observed MDP (POMDP), the agent again does not
know the future, but does not even know the current world state
exactly. Instead the agent only gets unreliable observations o ∈ Ω
about it, drawn from the distribution ot ∼ O(o|st). The agent’s goal
is the same, to maximize the total expected temporally-discounted
future reward. The POMDPM is then a tuple of all of these math-
ematical objects: M = (S,A,Ω, R, T,O, γ). Different POMDPs
tuples reflect different tasks.
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Fig. 1. Graphical model of a Partially Observable Markov Decision Process (POMDP)
(A) and the Inverse Rational Control (IRC) problem (B). Empty circles denote latent
variables, and solid circles denote observable variables. For the POMDP, the agent
knows its beliefs but must infer the world state. For IRC, the scientist knows the world
state but must infer the beliefs. The real world dynamics depends on parameters
φ, while that of the agent assumes parameters θ which include both its assumption
about the stochastic world dynamics and its own subjective rewards and costs.

Optimal solution of a POMDP requires the agent to com-
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pute a time-dependent posterior probability over the possible
current world state, given its history of observations and ac-
tions. All of that history can be summarized concisely in a sin-
gle distribution, the posterior B. It is useful to define a belief
state b as completely summarizing the posterior, so we can write
B(st|bt) = B(st|o1:t, a0:t−1). This belief state can be expressed
recursively using the Markov property as a function of its previous
value (Supplemental Information):

bt = 1
Z
O(ot|st) 〈T (st|st−1, at−1)〉st−1|bt−1

[1]

where Z is a normalization constant.*
We can express the entire partially observed MDP as a fully-

observed MDP called a Belief MDP, where the relevant fully-
observed state is not the world state s but instead the agent’s own
belief state b (10). To do so, we must re-express the transitions and
rewards as a function of these belief states, T (bt+1|bt, ot+1, at)
and R(bt, at), as described in the Supplemental Information.

The optimal agent then determines a value functionQ(b, a) over
this belief space and allowed actions, based on its own subjective
rewards and costs. This value can be computed recursively through
the Bellman equation (11)

Q(bt,at) = R(bt, at)+ [2]

γ

∫∫
dat+1dbt+1 T (bt+1|bt, at)π(at+1|bt+1)Q(bt+1, at+1)

The optimal policy deterministically selects whichever action
maximizes the value Q(b, a). An alternative stochastic pol-
icy samples from a softmax function over actions, π(a|b) ∼
1
Z

exp (Q(b, a)/τ)with a temperature parameter τ and normaliza-
tion constant Z. The randomness introduces a new sub-optimality
to the agent: instead of choosing the action with the maximal value,
the agent has some chance of choosing a worse action. In the limit
of a low temperature τ we recover the optimal policy, but a real
agent may be better described by a stochastic policy with some
controlled exploration.

Inverse Rational Control. Despite the appeal of optimality, animals
rarely appear optimal in experimentally defined tasks, and not just
by exhibiting more randomness. Short of optimality, what principled
guidance can we have about an animal’s actions that would help us
understand its brain? One possibility is that an animal is ‘rational’
— that is, optimal for different circumstances than those being
tested. In this section we present a behavioral analysis based on
the possibility that agents are rational in this sense. The core idea
is to parameterize possible strategies of an agent by those tasks
under which each is optimal, and find which of those best explains
the behavioral data.

We specify a family of POMDPs where each member has its
own task dynamics, observation probabilities, and subjective re-
wards, together constituting a parameter vector θ. These different
tasks yield a corresponding family of optimal agents, rather than a
single optimized agent. We then define a log-likelihood over the
tasks in this family, given the experimentally observed data and
marginalized over the agent’s latent beliefs (Figure 1B):

L(θ) = log
∫
db1:T p(b1:T , o1:T , a1:T , s1:T |θ, φ) [3]

*A minor notational point is that we assume that the agent is a function of the belief state, ei-
ther because it is a deterministic function of the belief or because the stochastic output action is
fully observed or appended to the belief state. Then we can write B(st|ot, at−1, bt−1) =
B(st|ot, bt−1). This justifies the omission of an arrow in Figure 1A from at−1 → bt . Alter-
natively we can allow the action to be partially observable and add another arrow to that figure.

In other words, we find a likelihood over which tasks an agent
solves optimally. In [3] φ are known parameters in the experimental
setup that determine the world dynamics. Since they only affect
observed quantities in the graphical model, they do not affect the
model likelihood over θ (Supplementary Information).

This mathematical structure connects interpretable models di-
rectly to experimentally observable data. We can now formalize
important scientific problems in behavioral neuroscience. For ex-
ample, we can maximize the likelihood to find the best interpretable
explanation of an animal’s behavior as rational within a model class,
as we show below. We can also compare categorically different
model classes that attribute to the agent different reward structures
or assumptions about the task.

The log-likelihood [3] seems complicated, as it depends on the
entire sequence of observations and actions and requires marginal-
ization over latent beliefs. Nonetheless it can be calculated using
the Markov property of the POMDP: the actions and observations
constitute a Markov chain where the agent’s belief state is a hidden
variable. We show that it is possible to exploit this structure to
compute this likelihood efficiently (Supplemental Information).

Challenges and solutions for rationalizing behavior. To solve the IRC
problem, we need to parameterize the task, beliefs, and policies,
and then we need to optimize the parameterized log-likelihood
to find the best explanation of the data. This raises practical
challenges that we need to address.

Our core idea for interpreting behavior is to parameterize ev-
erything in terms of tasks. All other elements of our models are
ultimately referred back to these tasks. Consequently, the beliefs
and transitions are distributions over latent task variables, the pol-
icy is expressed as a function of task parameters and preferences,
and the log-likelihood is a function of the task parameters that we
assume the agent assumes.

Thus, whatever representations we use for the belief space
or policy, we need to be able to propagate our optimization over
the task parameters through those representations. This is one
requirement for practical solutions of IRC. A second requirement is
that we can actually compute the optimal policies.

Efficient representation of general beliefs and transitions is hard
since the space of probabilities is much larger than the state space
it measures. The belief state is a probability distribution and thus
takes on continuous values even for discrete world states. For
continuous variables the space of probabilities is potentially infinite-
dimensional. This poses a substantial challenge both for machine
learning and for the brain, and finding neurally plausible represen-
tations of uncertainty is an active topic of research (12–17). We
consider two simple methods to solve IRC using lossy compression
of the beliefs: discretization, or distributional approximation. We
then provide a concrete example application in the discrete case.

Discrete beliefs and actions. If we have a discrete state space
then we can use conventional solution strategies for Markov De-
cision Processes. For a small enough world space, we can ex-
haustively discretize the complete belief space, and then solve the
Belief MDP problem with standard MDP algorithms (11, 18). In
particular, the state-action value function Q(b, a) under a softmax
policy π(a|b) can be expressed recursively by a Bellman equa-
tion, which we solve using value iteration (10, 11). The resultant
value function then determines the softmax policy π, and thereby
determines the policy-dependent term in the log-likelihood [3].

Finally, to solve the IRC problem we can directly optimize this
log-likelihood, for example by greedy line search (Supplementary
Information). An alternative in higher-dimensional problems is
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to use Expectation-Maximization to find a local optimum, with a
gradient ascent M-step (Supplementary Information, (19, 20)). To
compute the gradient of the log-likelihood, we again use recursion
to calculate the value gradient ∂Q/∂θ exactly, and use the chain
rule to derive the policy gradient and then the Q auxiliary function
gradient (Supplementary Information).

Continuous beliefs and actions. The computational expense of
the discrete solution grows rapidly with problem size, and become
intractable for continuous state spaces and continuous controls.
A practical choice is to approximate posteriors by a finite set of
summary statistics, and update them by a method like expecta-
tion propagation (21). The simplest example is to use quadratic
statistics, i.e. Gaussian posterior. This belief state can then be
updated according to an extended Kalman filter that accounts for
the agent’s internal model of the stochastic nonlinear dynamics.For
more general belief representations, the belief update equations
may require additional flexibility.

Rational control with continuous actions also requires us to
implement a family of continuous policies π that map from beliefs
to actions. We use deep neural networks to implement these
policies (22) through an actor-critic method (Deep Deterministic
Policy Gradient, (23)), by which one ‘critic’ network estimates the
value of each action taken by the ‘actor’ network.

Deep learning methods are commonly used in reinforcement
learning to provide flexibility, but they lack interpretability: informa-
tion about the policy is distributed across the weights and biases of
the network. Crucially, to maintain interpretability, we parameterize
this family by the task. Specifically, we provide the model parame-
ters as additional inputs to a policy network, and learn the optimal
policies simultaneously over a prior distribution on task parame-
ters p(θ) (22). This allows the network to generalize its optimal
strategies across POMDPs in the task family. It also allows us to
compute policy gradients simply using auto-differentiation, which
we exploit when optimizing the log-likelihood to find the parameters
that best match for an agent’s behavior.

Ultimately, after optimizing the log-likelihood for either discrete
or continuous representations, the end result is a set of parameters
θ that best explain the observed behavioral data, and define the
agent’s assumed internal task model and subjective preferences.
Within this model class, we have therefore found the best rational
explanation for the agent’s behavior.

Finding a neural code for rational thoughts. We don’t presume
that any real brain explicitly calculates a solution to the Bellman
equation, but rather learns a policy by combining experience and
mental modeling. With enough training, the result is an agent that
behaves ‘as if’ it were solving the POMDP (Figure 2A).

If an animal’s behavior is well-described as depending on latent
beliefs, as we assume in Inverse Rational Control, then it makes
sense that we should find neural correlates of these beliefs in the
brain. If we can find such correlates, does this mean that the
neurons encode or represent those beliefs? Some have argued
that the notion of a neural code is a poor metaphor because it
captures neither the causal or mechanistic structure of the brain,
nor its relation to actions and affordances (24–26). For example,
it may be that the brain does not use the neural signals that a
neuroscientist can use to extract information about a task.

In contrast, here we argue instead that the linked processes
of encoding, recoding, and decoding can be a useful way of ex-
plaining task-relevant computation in the brain at the algorithmic
or representational level (27). The brain’s ‘encoding’ specifies how
neural activity can be used to estimate task variables (Figure 2B),

including both rewarded variables and irrelevant or nuisance ones
that must be disentangled from them. ‘Recoding’ describes how
that encoding is transformed over time and space by neural pro-
cessing (Figure 2C). ‘Decoding’ describes how those estimates
predict future actions (Figure 2D).

(In our use of these terms, we are taking the brain’s perspective.
The term ‘decoding’ more often reflects the scientist’s perspective,
where the scientist decodes brain activity to estimate encoding
quality. Instead, we reserve the term decoding to describe how
neural activity affects actions: we say that the brain decodes its
own activity to generate behavior.)
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Fig. 2. Schematic for analyzing a dynamic neural code. (A) Graphical model of a
POMDP problem with a solution implemented by neurons implicitly encoding beliefs.
(B) We find how behaviorally relevant variables (here, beliefs) are encoded in mea-
sured neural activity through the function b̌t = ϕenc(rt). (C) We then test our
hypothesis that the brain recodes its beliefs rationally by testing whether the dynamics
of the behaviorally estimated belief b̂ match the dynamics of the neurally estimated
beliefs b̌, as expressed through the update dynamics f̂dyn(b̂t, ot) and recoding
function f̌rec(b̌t, ot). (D) Similarly, we test whether the brain decodes its beliefs
rationally by comparing the behaviorally and neurally derived policies π̂act and π̌dec.
Quantities estimated from behavior or from neurons are denoted by up-pointing or
down-pointing hats,ˆandˇ (Table S1).

This level of explanation need not capture every facet of neural
responses nor the mechanism by which they evolve. Obviously it
cannot explain responses to untested task variables. Nonetheless,
it would be great progress if we can account for stimulus- and
action-dependent neural dynamics within a task-relevant submani-
fold (28) that explains how pieces of information interact and predict
behavior. Although this ‘as-if’ description cannot legitimately claim
to be causal, it can be promoted to a causal description since it
does provide useful predictions for causal tests about what neural
features should influence computation and action (29, 30).

Next we describe the general structure of such a representation-
level explanation. We then follow this approach to analyze an
artificial brain performing a specific foraging task.

To begin the analysis, we propose to use Inverse Rational
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Control to construct a behavioral model from the sensory inputs
and actions that we observe the agent makes. The inferred internal
model allows us to impute the agent’s time-dependent beliefs b
about the partially observed world state s. Such a belief vector
might include full posterior over the world state, B(st|o1:t, a1:t−1)
as we used for the discrete IRC above, or a point estimate ŝ of the
world state and a measure of uncertainty about it, say a covariance
Σs, as in the Gaussian approximation we used for continuous IRC.
To us, as scientists, the agent’s beliefs are latent variables, so our
algorithm can at best create a posterior p(b) over those beliefs,
or a point estimate b̂ indicating the most probable belief. Here
we will base our analyses on a point estimate over beliefs. First
we will describe the general approach, and then we will apply this
approach in an example analysis.

Encoding. First we aim to find the brain’s encoding of the beliefs
about latent variables. Specifically, we look for neural correlates of
the estimate b̂ of the agent’s beliefs that we inferred by IRC.

While there is little doubt that real behavior is influenced by
uncertainty (31–34), it remains unclear how uncertain beliefs that
influence actions are encoded by the brain. These beliefs could
be represented in the brain in a multitude of ways,and resolving
this question is an active topic of current research. One reason it
is hard to make progress on this topic is that we cannot measure
the agent’s beliefs directly, except by assuming optimal inferences.
IRC gives us a way to estimate suboptimal beliefs, so we can
examine how the brain represents them.

Given beliefs b̂t imputed by IRC, we can estimate how they
are encoded in the neural responses r using a (potentially non-
linear, potentially spatiotemporal) readout function ϕenc(rt). This
can be accomplished by minimizing an encoding loss such as
Lenc =

∑
t
`enc

[
b̂t, ϕenc(rt)

]
where at each time `enc measures

the distance between the behavioral target belief b̂t and the neu-
ral estimate b̌t = ϕenc(rt) (Figure 2B). After training ϕenc using
the behavioral targets b̂, we can then cross-validate it on new
estimates b̌ from fresh neural data. (Estimates based on the be-
havioral model are consistently denoted by an up-pointing hat, x̂,
as distinguished from estimates based on the neural responses
denoted by a down-pointing hat, x̌, as indicated in Table S1.)

Recoding. While neural dynamics may affect every dimension of
neural activity, we focus only on the interpretable dynamics within
the lower-dimensional task manifold. By construction, those dy-
namics reflect the changes in the agent’s beliefs.

The rational control model predicts that beliefs are updated
by sensory observations and past beliefs, with interactions that
are determined by the internal model according to a function
bt+1 = fdyn(bt, ot) + ηt where fdyn and ηt reflect the determin-
istic and stochastic parts of the dynamics. If our neural analysis
correctly identifies dynamics responsible for behavior, then the be-
liefs b̌ estimated from the neural encoding should be recoded over
time following those same update rules. We estimate this neural
recoding function f̌rec(b̌t, ot) directly from the sequence of neurally
estimated beliefs b̌ by minimizing a recoding prediction loss, such
as Lrec =

∑
t
`rec
[
b̌t+1, f̌rec(b̌t, ot)

]
where `rec penalizes differ-

ences between the actual and predicted future beliefs. We then
compare f̌rec to the update dynamics posited by the behavioral
model f̂dyn (Figure 2C). (We should compare these only over the
distribution of experienced beliefs, i.e. those beliefs for which the
recoding function matters in practice.) Agreement between these
recoding functions implies that we have successfully understood
the ‘recoding’ process. Even for good encoding models this is

not guaranteed, since activity outside the encoding manifold could
influence the neural dynamics.

The encoding dimensions may seem to change over time or
context (2, 35). Perhaps this too should count as recoding, such
that our approach of estimating beliefs from neural activity using a
nonadaptive function ϕenc(r) would then miss important computa-
tions. However, this only indicates that our way of measuring the
encoding is too limited. The real encoding model could be fixed
but nonlinear (36), and can appear adaptive when measured by
an inadequate model (37). More complex functions are harder to
fit but the brain’s neural code may require this added complexity.

Decoding. These encodings and recodings do not matter if the
brain never decodes that information into behavior. We can
evaluate how the brain uses this information by predicting ac-
tions from the neurally encoded beliefs, minimizing a decod-
ing loss between observed actions and distribution of actions
ǎ predicted from neurally estimated belief by the policy π̌(ǎ|b̌):
Ldec =

∑
t
`dec

[
at, π̌dec(ǎ|b̌t)

]
where `dec penalizes actions that

are unexpected according to the given policy. We then test the hy-
pothesis that the brain decodes neurally encoded rational thoughts
by comparing the neurally-derived policy π̌dec against the behav-
ioral policy, π̂act (Figure 2D).

Application to Foraging. We applied our analyses to understand
the workings of a neural network performing a foraging task. The
task requires an agent to combine unreliable sensory data with an
internal memory to infer when and where rewards are available,
and how to best acquire them. We train an artificial recurrent
neural network to solve this task in a suboptimal but rational way,
use Inverse Rational Control to infer its assumptions, subjective
preferences, and beliefs, and then analyze its neural responses to
test our coding framework.

Task description. Two locations (‘feeding boxes’) have hidden food
rewards that appear and disappear according to independent tele-
graph processes with specified transition probabilities (Figure 3,
(38)). The boxes provide unreliable color cues about the current
reward availability, ranging from blue (probably unavailable) to red
(probably available).

box 1 reward
availability

box 1 color

box 2 reward
availability
box 2 color

travel
reward

available?

Foraging task

location

got reward
after push?

yes no

time

push

Agent’s
location

box 1
center
box 2

Fig. 3. Illustration of foraging task with latent dynamics and partially observable
sensory data. The reward availability in each of two boxes evolves according to a
telegraph process, switching between available (red) and unavailable (blue), and
colors give the animal an ambiguous sensory cue about the reward availability. The
agent may travel between the locations of the two boxes. When a button is pressed to
open a box, the agent receives any available reward.

We assume there are three possible locations for the agent: the
locations of boxes 1 and 2, and a middle location 0. We include a
small ‘grooming’ reward for staying at the middle location, to allow
the agent to stop and rest. A few discrete actions are available to
the agent: it can push a button to open a box to either get reward
or observe its absence, it can move toward a new location, or it
can do nothing. Traveling and pushing a button to open the box
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each have an associated cost. This disincentivizes the agent from
repeating fruitless actions. When a button-press action is taken
to open a box, any available reward there is acquired. Afterwards,
the animal knows there is no more food available now in the box
(since it was either unavailable or consumed) and the belief about
food availability in that box is reset to zero.

Neural network agent. We first create a rational agent that solves
a POMDP problem in this family, and then we use supervised
learning to train a nonlinear recurrent neural network to match the
belief dynamics and policy of that agent.

To create the rational agent, we discretize beliefs about reward
availability for each box into N = 10 belief states. We define
the transition matrix in the discretized belief space by binning
the continuous transition matrix T (bt+1|bt, at). We allow a small
diffusion between neighboring bins, which reflects dynamic belief
stochasticity. With the defined transition matrices and reward
functions for different actions for the internal model, we can solve
for the optimal softmax policy.

Figure S1A shows the architecture of our recurrent network.
After training to match the rational agent, readouts of the neural
activities closely match the POMDP agent’s beliefs and policies
(Figure S1B,C), but these task-relevant quantities are encoded
implicitly in a large population of neurons.

We then collected sensory observations and actions from the
neural network agent while it was challenged by a different task
than the one for which it was optimized (Methods). These inputs led
to a time series of observations ot, actions at, and neural activity
rt. Together these constitute the experimental measurements.

Inverse Rational Control for foraging. We don’t know the agent’s
assumed world parameters, nor do we know the agent’s subjec-
tive costs, nor the amount of randomness (softmax temperature).
Our goal is to estimate a simulated agent’s internal model and
belief dynamics from its chosen actions in response to its sensory
observations. We infer all of these using IRC.

The actions and sensory evidence (color cues, locations and
rewards) obtained by the agent all constitute observations for the
experimenter’s learning of the agent’s internal model. Based on
these observations over 1000 time points, including 364 move-
ments and 109 button presses, we use IRC to infer the parameters
of the internal model that can best explain the behavioral data
(Figure 4A). The comparison between the true parameters and the
estimated parameters are shown in Figure 4B.
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more data. With the estimated parameters, we are able to infer a
posterior over the dynamic beliefs (Figure 5A). (Note that this is
an experimenter’s posterior over the agent’s subjective posterior!)
The inferred posterior is consistent with the agent’s true subjective
probability of the food availability in each box. The inferred distribu-
tions over beliefs reveals strong correlations between the true and
estimated belief state (Figure 5B).

Figure 5C–F shows that the artificial brain and inferred agent
choose actions with similar frequencies, occupy the three locations
for the same fraction of time, and wait similar amounts of time
between pushing buttons or travelling. This demonstrates that the
IRC-derived agent’s internal model generates behaviors that are
consistent with behaviors of the agent from which it learned.

Neural analysis of rational foraging. We can now use our neural
coding framework to look inside the brain.

We assume that beliefs bt are linearly encoded instantaneously
in neural activity rt. For our example synthetic brain, this is correct
by construction. After performing linear regression of behaviorally
derived beliefs b̂ against neural activity r, we can estimate other
beliefs b̌ from previously unseen neural data. Figure 6A shows that
these beliefs estimated from neural data are accurate.

Figure 6B shows that the recoding dynamics obtained from
the neural belief dynamics also match the dynamics described
by the rational model. We characterize these neural dynamics
using kernel ridge regression between b̌t and b̌t+1 (Methods).
The resultant temporal changes in the neurally-derived beliefs
∆b̌t = f̌rec(b̌t, ot)− b̌t agree with the corresponding changes in
the behavioral model beliefs, ∆b̂t = f̂dyn(b̂t, ot) − b̂t. Although
some of these changes are driven directly by the sensory observa-
tions (colors), that only explains part of the belief updates: even
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conditioned on a given sensory input at one time, the updates
agree between the neurons and the behavioral model. This pro-
vides evidence that we understand the internal model that governs
recoding at the algorithmic level.

Similarly, our analysis of neural decoding uses nonlinear multi-
nomial regression to fit the probabilities π̌dec(a|b̌) of allowed ac-
tions as a function of neurally derived beliefs (Methods). A compar-
ison of the resultant function to the rational policy π̂act shows that
these two decoding functions match reasonably well (Figure 6C).
This provides evidence that we understand the decoding process
by which task-relevant neural activity generates behavior.

Discussion

In this work we used an explainable AI paradigm to infer an internal
model, latent beliefs, and subjective preferences of a rational agent
that solves a POMDP. We fit the model by maximizing the likelihood
of the agent’s sensory observations and actions over a family of
tasks. We then described a neural coding framework for testing
whether the imputed latent beliefs encoded in a low-dimensional
manifold of neural responses are recoded and decoded in a man-
ner consistent with this behavioral model. We illustrated these two
contributions by analyzing the neural coding of an implicit com-
putational model by an artificial neural network trained to solve
a simple foraging task requiring memory, evidence integration,
and planning. For this simulated data, we successfully recovered
the agent’s internal model and subjective preferences, and found
neural computations consistent with that model.

Related work. Our approach generalizes previous work in artificial
intelligence on the inverse problem of learning agents by observ-
ing behavior. Methodologically, other studies of inverse problems
address parts of Inverse Rational Control, but with a non-scientific
goal — getting artificial agents to solve tasks by learning from
demonstrations of expert behavior. Inverse Reinforcement Learn-
ing (IRL) tackles the problem of learning how an agent judges
rewards and costs based on observed actions (39), but assumes a
known dynamics model (20, 40). Conversely, Inverse Optimal Con-
trol (IOC) learns the agent’s internal model for the world dynamics

(41) and observations (42), but assumes the reward functions. In
(43, 44) both reward function and dynamics were learned, but only
the fully-observed MDP case is explored. We solve the natural but
more difficult partially-observed setting, and ensure these solutions
provide a scientific basis for interpreting animal behavior.

As a cognitive theory, by positing a rational but possibly mis-
taken agent, our approach resembles Bayesian Theory of Mind
(BToM) (45–50). Previous work in BToM has considered tasks with
uncertainty about static latent variables that were unknown until
fully observed (50), or tasks with partially observed variables but
simpler trial-based structure (45, 46). Here we allow for a more
natural world, with dynamic latent variables and partial observabil-
ity, and we infer models where agents make long-term plans and
choose sequences of actions. Where prior work in BToM learned
subjective rewards (50) or internal models (48), our Inverse Ratio-
nal Control infers both internal models and subjective preferences
in a partially observable world.

In addition, BToM studies have focused their attention on mod-
els of behavior, whereas our purpose is to connect dynamic model
computations to brain dynamics. Some work has posited a POMDP
model for behavior and hypothesized how specific brain regions
might implement the relevant computations (51). Here we demon-
strate an analysis framework to test such connections, by exam-
ining neural representations of latent variables and showing how
computational functions could be embodied by low-dimensional
neural dynamics.

While low-dimensional neural dynamics is an important topic for
emerging studies of large-scale neural activity (2, 6, 52), few have
been able to relate these dynamic activity patterns to interpretable
latent model variables. Far more commonly, these low-dimensional
manifolds are attributed to an intrinsically generated manifold (28,
53), or are related to measurable quantities like sensory inputs
or behavioral outputs (2, 54, 55). Population activity in the visual
system is known to relate to latent representations extracted by
trained deep networks (3, 4), and while this shows that many
task-relevant features extracted by machine learning solutions are
also task-relevant for the visual system, these feature sets yet
account for neither temporal dynamics nor uncertainty, nor are they
readily interpretable (56). Our proposed model-based analysis of
population activity is currently our best bet for finding interpretable
computational principles.

Virtues of representation-level explanations. Many re-
searchers in machine learning express skepticism that we can find
much that is human-interpretable about either artificial or biological
neural networks (57, 58). One interesting counterargument is
that near any solution found by machine learning optimization,
there may be other solutions that perform similarly while retaining
interpretability (59). More humbly, even if we cannot find
an interpretable network that exactly instantiates the brain’s
computations, we may still glean satisfying and useful insights
from partial explanations at a higher level of abstraction (60–62).

Although the brain may not be thoroughly interpretable, we may
benefit from imposing some interpretability, even at the cost of a
perfect model. On the other hand, we may find instead that this
imposition may lead us to more accurate neural representations
that better reflect our abilities to interact with latent variables at
many scales, things that brute force deep learning methods fail to
find without explicit training. Finally, task-based cognitive models
may reveal core principles that appear canonically across the brain.

Our recoding and decoding analysis does not apply to neural
responses directly, but rather to the task-relevant information en-
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coded in those responses. This targeted dimensionality reduction
abstracts away the fine details of the neural signals in favor of an
algorithmic- or representational-level description. This decreases
the number of parameters needed to characterize dynamics, re-
ducing overfitting. More importantly, it can avoid the massive
degeneracies inherent in neuron-level mechanisms: different neu-
ral networks could have entirely different neural dynamics but could
share the task-relevant computations. This illustrates how a deeper,
more invariant understanding of neural computations is possible at
the algorithmic level than at the mechanistic level.

Limitations. Future states are relevant for selecting actions, but in
our formalism they are embedded implicitly in a learned policy, so
an agent does not need to imagine any possible futures once learn-
ing is completed. Introspectively, our thoughts are often dedicated
to anticipating what might happen the future, and neural activity
shows signatures of such predictions (63). Thus a natural exten-
sion of our approach would be to examine the neural coding of
these types of rational thoughts directed at future (and past) world
states, both for learning and for re-evaluating policies dynamically.

We applied our method only to a fairly simple task, but our
framework is quite general and can scale to much more complex
tasks, and can model common errors of cogntive systems. It can
be used to infer false beliefs derived from incorrect or incomplete
knowledge of task parameters. It can also be used to infer incorrect
structure within a given model class. For example, it is natural for
animals to assume that some aspects of the world, such as reward
rates at different locations, are not fixed, even if an experiment
actually uses fixed rates (64). Similarly, an agent may have a super-
stition that different reward sources are correlated even when they
are independent in reality. Given a model class that includes such
counterfactual relationships between task variables, our method
can test whether an agent holds these incorrect assumptions.

However, our approach does require a model, and it is unlikely
that the brain’s full internal model is easily expressible compactly.
Large-scale tasks are being solved with neural networks (65, 66)
that provide rich state representations, but may not permit inter-
pretation. This may be an unavoidable limitation in a world of
complex structure (57, 58). Or it may be that these uninterpretable
representations are insufficiently constrained, and that richer tasks,
multi-task training, and more latent variables may bias networks
toward more human-interpretable representations (59, 67, 68) that
relate more closely to actionable causal latent variables (24).

In experiments, uncontrolled but structured variability could
arise from internal noise sources, internal states, or thoughts about
other tasks. Here we have neglected these effects, but when
analyzing task-relevant computation in real brains it may help to
allow for structured latent dynamics that have no grounding in a
task or model (69, 70) or may have an implementational purpose
(13, 15, 71, 72).

Conclusion. The success of our methods on simulated agents
suggests it could be fruitfully applied to experimental data from
real animals performing such foraging tasks (38, 73), as well as
to richer tasks requiring even more sophisticated computations.
Using explainable AI to construct belief states, their dynamics, and
their utility for solving interesting tasks will provide useful targets
for interpreting dynamic neural activity patterns, which could help
identity the neural substrates of thoughts.

Materials and Methods

Inverse Rational Control. Full mathematical details for IRC are
available in Supplementary Information. Code for the discrete case
is available at https://github.com/XaqLab/IRC_TwoSiteForaging.

Foraging task and POMDP agent parameters. The foraging task
described in the Results has two reward boxes for which the true
reward availability followed a telegraph process, alternating be-
tween available and unavailable at uniform switching rates. For the
two boxes, the true appearance and disappearance probabilities in
one time step were γ∗1 = 0.15, γ∗2 = 0.1 and ε∗1 = 0.05, ε∗2 = 0.04.

Each box also displayed a sensory cue at each time condi-
tioned on the reward availability, comprising five possible colors,
with redder (bluer) colors indicating higher (lower) probability that
food is currently available in the box. To be an interesting task,
the distributions under the two states should overlap enough that
the animal cannot depend primarily on the color cue to anticipate
the food availability. Color values for both boxes are drawn inde-
pendently at each time from a binomial distribution with five states,
with mean q∗1 = 0.4 when food is available in the box, and q∗2 = 0.6
otherwise, and variance 0.96 for both of the two cases.

The target agent makes wrong assumptions about all of these
parameters, acting rationally for a task where γ1 = 0.2, γ2 = 0.15,
ε1 = 0.1, ε2 = 0.08, q1 = 0.42, and q2 = 0.66.

We measure gains and losses in currency of reward, R ≡ 1. In
those units, our target agent incurs a subjective cost of 0.3 when
pressing the button, and a cost of 0.2 when traveling. Switching
between boxes requires two steps, for a total cost of 0.4. We also
allow a ‘grooming’ rewardR = 0.2 for waiting at the center location.
Our agent uses a softmax policy with temperature τ = 0.1.

Simulated brain. We trained a neural network to match the be-
havior of a rational agent. The target behavior was implemented
by an agent that used optimal belief updates and a softmax policy
trained to solve a Belief MDP by value iteration (11).

Our neural network used one recurrently connected layer of
300 rectified linear units (ReLUs) that received external inputs from
the world-generated observations and agent-generated actions.
Beliefs were estimated from this recurrent layer by a linear weighted
sum. In parallel, the recurrently connected neurons provided input
to a two-layer perceptron, with 100 ReLU neurons followed by 5
policy neurons (Figure S1).

The architecture was built in PyTorch and optimized by super-
vised learning using gradient descent on a mean-squared error
loss function and KL-divergence loss function, in two phases re-
spectively. First, the recurrent connection strengths and the linear
belief readout were jointly optimized by backpropagation through
time to match the dynamic beliefs of the target agent. Second, the
linear belief readout was discarded, and the recurrent units’ outputs
were passed through the two nonlinear stages and were optimized
so that the 5 policy neurons matched the target POMDP policy
at all times. After 60 iterations of 20 batches of 500 time points
per batch, the trained neural network successfully reproduced the
target beliefs within a mean squared error of 0.003, and the target
policy within an average KL divergence of 0.005.

The trained neural network could then be run autonomously
in closed-loop mode, sampling its own actions from a softmax
distribution applied to the 5 output neurons.
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Neural coding analysis. Encoding: We find an encoding matrix
W̌ by regressing b against r. This produces neural estimates
of task-relevant variables b̌ = W̌r + c for new data. Recoding:
We find dynamics by regressing b̌t against (b̌t−1, ot) with kernel
ridge regression. The kernel functions are radial basis functions
with centers on all possible target beliefs and a width at half-max
equal to the spacing between beliefs. This yields the ‘recoding’
function f̌rec(b̌t, ot) representing the nonlinear dynamics of the
neural beliefs. We compare the belief updates ∆b̌t = f̌(b̌t, ot)− b̌t
from the recoding function f̌rec(b̌t, ot) and the corresponding belief
updates from the task dynamics ∆b̂t = f̂dyn(b̂t, ot)−b̂t. Decoding:
We compute the brain’s ‘decoding’ function, i.e. an approximate
policy π̌dec, using nonlinear multinomial regression of b̌ against a
with the same radial basis functions as used in recoding. We use
a feature space of radial basis functions with centers on a 9 × 9
grid over beliefs, with width equal to the center spacing, and an
outer product space over locations.
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symbol meaning symbol meaning
t time
s world state T (s′|s, a), T (b′|b, a) transition probability
o observation O(o|s), O(o|b) observation probability
b belief B(st|o1:t, a1:t−1) posterior
a action π(a|b) policy
r neural responses R(s, a), R(b, a) reward
x∗ true world variable Q state-action value
x agent’s actual assumption Q auxiliary function in EM
x̂ estimate from behavior L log-likelihood
x̌ estimate from neurons `, L loss

ϕ̌enc estimate from encoding: r → b̌

f̌rec recoding / neural dynamics: b̌ → b̌ f̂dyn behavioral dynamics: b̂ → b̂

π̌dec decoding / neural policy: b̌ → a π̂act behavioral policy: b̂ → a

Table S1. Glossary of notation.
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Fig. S1. A: Architecture of a synthetic brain trained to behave rationally by matching the true beliefs b and policy π of a POMDP agent. The recurrent network uses 300
fully-connected neurons with a ReLU nonlinearity. There are 5 policy neurons, one for each possible action, and the network samples an action from the softmax over these
policy neurons. Notice that there are no hats over these quantities, because these are not estimates. B: The neural network has almost the same beliefs as a rational agent
given the same observations. C: Neural network reproduces the policy of a rational agent.

Supporting Information Appendix (SI).

Belief MDP. In a belief MDP, an agent chooses actions based on the belief state bt, so the agent must compute the belief state at each
time given its observations and actions up to that time. This can be computed online using the Markov property, according to

B(st|bt) = B(st|o1:t, a1:t−1) [4]

= B(st|ot, at−1, bt−1) [5]

= 1
Z
O(ot|st)

∫
dst−1 T (st|st−1, at−1)B(st−1|ot−1, at−2, bt−2) [6]

= 1
Z
O(ot|st)

∫
dst−1 T (st|st−1, at−1)B(st−1|bt−1) [7]

To find the optimal policy, an agent evaluates the value of each action and state. If the agent were given future observations and
actions, then its future beliefs would be known. But when observations are unknown, the agent has only a distribution over beliefs,
arising from the distribution of future observations it may encounter from the distribution of future world states. The transition probability
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between belief states is then

T (bt+1|bt, at)=
∫
dot+1 P (bt+1|bt, at, ot+1)O(ot+1|bt) [8]

where

O(ot+1, at|bt)=
∫
dst+1 dstO(ot+1|st+1)T (st+1|st, at)B(st|bt)

is the distribution of future observations given the present belief and action. The parameters of this belief transition probability
T (bt+1|bt, at) therefore include parameters from both the world state transitions T (st+1|st, at) and observation functions O(ot|st).

The true instantaneous reward function R(s, a) depends on the actual state and action. But for planning into the future, the agent
must consider the reward as a function of its beliefs, which it expects to be

R(bt, at) =
∫
dstR(st, at)B(st|bt) [9]

These beliefs, belief transitions T , and rewards R then determine the optimal policy through the Bellman equation, as described in
the main text [2].

Markov structure in Inverse Rational Control. The log-likelihood of the observed data L(θ) [3] can be written as the sum of the expected
complete data log-likelihood Q(θ) and the entropy H of the posterior over beliefs, L(θ) = Q(θ) +H , as in the Expectation-Maximization
(EM) algorithm (19).† Each of these terms can be decomposed into sums of transition probabilities and policies at each time, due to the
Markov property. Using the graphical model structure shown in Figure 1B, we have

Q(θ) =
〈

log p(b1, o1, s1|θ, φ) [10]

+
∑

t
log π(at|bt, θ) [11]

+
∑

t
log p(bt+1|bt, at, ot, θ) [12]

+
∑

t
logO(ot+1|st+1, φ) [13]

+
∑

t
log T (st+1|st, at, φ)

〉
p(b1:T |a1:T ,o1:T ,s1:T ,θ,φ)

[14]

The term in [12] depends only on the parameters for the state dynamics and observations, while the policy term in [11] depends on both
the dynamics and observation parameters and reward functions. The entropy H of the posterior can be computed similarly (see below).

Note that the true world state s only appears in terms with the experimental parameters φ, and does not appear with the agent’s
parameters θ in this likelihood, because what matters to our model is not what actually happens in the world but rather what the agent
thinks happens.

According to (74), the entropy of the posterior over beliefs can be calculated recursively as

H(b1:t−1|bt, o1:t, a1:t, s1:t, θ, φ) =
∫
dbtH(b1:t−2|bt−1, o1:t−1, a1:t−1, s1:t−1, θ, φ)p(bt−1|bt, o1:t, a1:t, s1:t, θ, φ) [15]

+H(p(bt−1|bt, o1:t, a1:t, s1:t, θ, φ)) [16]

where p(bt−1|bt, o1:t, a1:t, s1:t, θ, φ) can be calculated with Bayes rule. For the last time point, t = T , the entropy of the entire belief
sequence can be obtained similarly as

H(p(b1:T |a1:T , o1:T , s1:T , θ, φ) =
∫
dbT H(b1:T−1|bT , o1:T , a1:T , s1:T , θ, φ)p(bT |a1:T , o1:T , s1:T , θ, φ) [17]

+H(p(bT |a1:T , o1:T , s1:T , θ, φ)) [18]

Line search method. In small problems like the foraging task considered in the main text, we can sometimes optimize the log-likelihood
function L(θ) directly by a greedy line search method. Here we iteratively perform one-dimensional grid searches along random
directions in parameter space. Once we find the optimal parameters on a line, we choose a new direction randomly from that starting
point. We repeat this procedure until convergence.

†Unfortunately, the conventional notations in EM and reinforcement learning collide here, both using the same letter: thisQ auxiliary function is denoted in the Calligraphic font to distinguish it from the
state-action value functionQ in the MDP model.
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EM algorithm. The EM algorithm (19) enables us to solve for the parameters that give best explanation of the observed data, while
inferring unobserved states in the model. Recall that the log-likelihood of the observed data logL(θ) can be written as

L(θ) = log
∫
db1:T p(b1:T , o1:T , a1:T , s1:T |θ, φ) [19]

Here θ is a parameter vector which includes both assumptions about the world dynamics and the parameters determining the subjective
magnitudes of rewards and action costs. We alternately update the parameters θ to improve the expected complete-data log-likelihood,
and calculate the posterior over latent states based on the estimated parameters from the most recent iteration.

According to the EM algorithm, in the E-step the estimated parameters θold from the previous iteration determine the posterior
distribution of the latent variable given the observed data P (b1:T |a1:T , o1:T , θ

old). In the M-step, the observed data log-likelihood function
to be maximized reduces to

L(θ) = Q(θ, θold) +H(P (b1:T |a1:T , o1:T , θ
old)) [20]

To be consistent with (75), we use Q(θ, θold) as the auxiliary function that describes the expected complete data log likelihood, and H(·)
is the entropy of the posterior of the latent variable. Note that H(·) is not a function of θ, and thus has a fixed value if θold is fixed.

The Q-auxiliary function can be expressed as:

Q(θ, θold) = 〈log p(b1:T , a1:T , o1:T , s1:T |θ, φ)〉P (b1:T |a1:T ,o1:T ,s1:T ,θold,φold) [21]

where φ are the parameters in the experimental setup that determine the world dynamics. Since φ are fixed in the experiment and known
in the analysis, they do not affect the model likelihood.

The complete data likelihood p(b1:T , a1:T , o1:T , s1:T |θ, φ) can be factorized into transition probabilities and policies at each time due
to the Markov property. We can therefore decompose the expected complete data log likelihood Q(θ, θold) using the graphical model
structure, as described in [10–14], except now the posterior distribution over beliefs is based on the previous iteration’s parameters:

Q(θ, θold) =
〈

logP (b1, o1, s1|θ, φ) [22]

+
∑

t
log π(at|bt, θ) [23]

+
∑

t
log p(bt+1|bt, at+1, ot, θ) [24]

+
∑

t
logO(ot+1|st, φ) [25]

+
∑

t
log T (st+1|st, at, φ)

〉
P (b1:T |a1:T ,o1:T ,s1:T ,θold,φold)

[26]

Instead of solving for the optimal θ in a closed form, we use gradient descent to update the parameter θ in the M-step.
With fixed parameters θold from the previous iteration, the entropy of the latent state H(P (b1:T |a1:T , o1:T , θ

old) is fixed. As a result, we
only need to update parameter θ to maximize function Q(θ, θold) in the M-step. The first term in [22] reflects the initial belief distribution,
and it has a negligible contribution to Q when there are many time points t. In [24], the transition probability P (bt+1|bt, at+1, ot, θ) is a
function of the dynamics parameters, while in [23], the policy term P (at|bt, θ) is a function of both the dynamic parameters and the
rewards. Since the transition probability is a matrix whose elements are functions of the dynamics parameters, the gradients can be
taken element-wise. We will show how the gradient of the policy function can be derived based on the Q value function in the next part.

Over iterations of the EM algorithm, the value of the log-likelihood L(θ) always increases toward a (possibly local) maximum.

Value gradient in IRC. To take gradient of the Q(θ, θold) auxiliary function, it is critical to have the gradient of the policy function. For a
softmax policy based on the value function, π(a|b) ∼ 1

Z(b)e
Q(b,a)/τ , if we have the gradient of the value function with respect to the

parameters, we can then obtain the gradient of the policy function using the chain rule:

∂π(a|b)
∂θi

= ∂π(a|b)
∂Q(b, a)

∂Q(b, a)
∂θi

+
∫
a′ 6=a

da′
∂π(a|b)
∂Q(b, a′)

∂Q(b, a′)
∂θi

. [27]

Recall that the Q value function for belief state-action pairs can be written as

Q(bt,at) = R(bt, at)+

γ

∫∫
dat+1dbt+1 T (bt+1|bt, at)π(at+1|bt+1)Q(bt+1, at+1)
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Consider now a specific element θi of the parameter vector θ. For a particular (bt, at) pair, taking the derivative of both sides with
respect to θi, we have

∂Q(bt, at)
∂θi

=∂R(bt, at)
∂θi

[28]

+γ
∫
dbt+1

T (bt+1|bt, at)
∂θi

∫
dat+1π(at+1|bt+1)Q(bt+1, at+1) [29]

+γ
∫
dbt+1T (bt+1|bt, at)

∫
dat+1

∂π(at+1|bt+1)
∂θi

Q(bt+1, at+1) [30]

+γ
∫
dbt+1T (bt+1|bt, at)

∫
dat+1π(at+1|bt+1)∂Q(bt+1, at+1)

∂θi
[31]

Note here
∂Q(bt, at)

∂θi
is a scalar. We define ci(·) as the sum of the first two lines [28–29]:

ci(bt, at) = ∂R(bt, at)
∂θi

+ γ

∫
dbt+1

T (bt+1|bt, at)
∂θi

∫
dat+1π(at+1|bt+1)Q(bt+1, at+1) [32]

With this substitution we have

∂Q(bt, at)
∂θi

= ci(bt, at)+γ
∫
dbt+1T (bt+1|bt, at)

∫
dat+1

[
∂π(at+1|bt+1)

∂θi
Q(bt+1, at+1) + π(at+1|bt+1)∂Q(bt+1, at+1)

∂θi

]
[33]

where
∂π(at+1|bt+1)

∂θi
can be written as a function of

∂Q(bt+1, at+1)
∂θi

according to the chain rule [27].

Suppose there are |B| distinct belief states, and |A| actions. If we vectorize the matrices Q(bt, at) , π(at|bt) and ci(bt, at) over these
discrete belief states and actions, denoting them as QVt , πVt and cVi,t respectively, then these are vectors with length |B||A|. Equation
[33] can then be rewritten as a linear function

...
∂QVt
∂θi

...

 =


...
cVi,t

...

+ γ


...

...
...

T (bt+1|bt, at) T (bt+1|bt, at) T (bt+1|bt, at)
...

...
...


︸ ︷︷ ︸

Γ(T (bt+1|bt,at))

(
. . .

QVt
. . .




...
∂πVt
∂QVt

...

+


. . .

πVt
. . .


)

...
∂QVt
∂θi

...

 ,

where


...

∂QVt
∂θi

...

 is a |B||A| × 1 vector,


...

∂πVt
∂QVt

...

 is a |B||A| × |B||A| matrix,


. . .

QVt
. . .

 and


. . .

πVt
. . .

 are diagonal

matrices with vectorsQVt and πVt along the diagonal, and Γ(T (bt+1|bt, at)) is a function of the belief transition probability T (bt+1|bt, at).
The derivative of QVt with respect to the parameter θi can then be solved as

...
∂QVt
∂θi

...

 =

(
I − γΓ(T (bt+1|bt, at))

(
. . .

QVt
. . .




...
∂πVt
∂QVt

...

+


. . .

πVt
. . .

)
)−1


...
cVi,t

...

 [34]

Without the brackets indicating the matrix shapes, finally we obtain

∂QVt
∂θi

=
(
I − γΓ

(
Diag(QVt ) ∂π

V
t

∂QVt
+ Diag(πVt )

))−1

cVi,t. [35]

With the chain rule [27], we can obtain the gradients of the policy with respect to the parameters θ, which lets us calculate the gradient
of the Q(θ, θold) function in [22–26], and use them in the M-step of the EM algorithm applied to IRC. The result is an improved estimate
of the agent’s internal model based on its sensory observations and actions.
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