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Abstract

Despite impressive performance on numerous visual tasks, Convolutional Neural
Networks (CNNs) — unlike brains — are often highly sensitive to small pertur-
bations of their input, e.g. adversarial noise leading to erroneous decisions. We
propose to regularize CNNs using large-scale neuroscience data to learn more
robust neural features in terms of representational similarity. We presented natural
images to mice and measured the responses of thousands of neurons from cortical
visual areas. Next, we denoised the notoriously variable neural activity using strong
predictive models trained on this large corpus of responses from the mouse visual
system, and calculated the representational similarity for millions of pairs of images
from the model’s predictions. We then used the neural representation similarity
to regularize CNNs trained on image classification by penalizing intermediate
representations that deviated from neural ones. This preserved performance of
baseline models when classifying images under standard benchmarks, while main-
taining substantially higher performance compared to baseline or control models
when classifying noisy images. Moreover, the models regularized with cortical
representations also improved model robustness in terms of adversarial attacks.
This demonstrates that regularizing with neural data can be an effective tool to
create an inductive bias towards more robust inference.

1 Introduction

Convolutional neural network (CNN) models are widely used in computer vision tasks, and can
achieve super-human performance on many classification tasks [1, 2]. However, there is a still huge
gap between these models and the human visual system in terms of robustness and generalization
[3, 4, 5]. In fact, the invariant neural representations and the ability to generalize across complex
transformations has been seen as the hallmark of visual intelligence [6, 7, 8, 9]. Understanding why
the visual system has superior performance on so many perceptual problems is one of the central
questions of neuroscience and machine learning. In particular, CNNs are vulnerable to adversarial
attacks and noise distortions [10, 3, 4] while human perception is barely affected by these small
image perturbations. This highlights that state-of-the-art CNNs lack human level scene understanding
and do not rely on the same causal features as humans for visual perception [4, 5, 11].
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Regularization and implicit inductive biases in deep networks can positively affect robustness and
generalization by constraining the parameter space and biasing the trained model to use better features.
However, these biases are often rather nonspecific and networks often latch onto patterns that do
not generalize well outside the distribution of training data. Biological visual systems, however,
cope with strongly varying conditions all the time. Based on recently reported overlap between
the sensory representations of task-trained CNNs and representations measured in primate brains
[12, 13, 14, 15, 16], we thus hypothesized that biasing the representation of artificial networks towards
biological stimulus representations might positively affect their robustness.

Here, we show that directly measuring the neural representation in animal visual cortices and biasing
CNN models toward a more biological feature space can indeed lead to more robust models. To this
end, we recorded the simultaneous responses of thousands of neurons to complex natural scenes
in visual cortex of awake mice. In order to bias a CNN towards biological feature representations,
we modified its objective function so that convolutional features are encouraged to establish the
same structure as neural activities. We found that by regularizing a ResNet [1] towards a biological
neural representation, the trained models had higher classification accuracy than baseline when input
images were corrupted by random noise or adversarial perturbations. Regularization towards random
representations or features from a pretrained VGG model was substantially less helpful.

2 Neural representation similarity

We performed several 2-photon scans in primary visual cortex on multiple mice, with repeated scans
per animal across different days. During the experiment, the head-fixed mice were able to run on a
treadmill while passively viewing natural image each presented for 500ms. In each experiment, we
measured responses to 5100 different grayscale images sampled from the ImageNet dataset, 100 of
which were repeated 10 times to give 6000 trials in total. Each image was downsampled by a factor
of four to 64 × 36 pixels. We call the repeated images ‘oracle images’, because the mean neural
responses over these repeated trials serve as a high quality predictor (oracle) for validation trials. The
major reason for choosing mice in our study is they allow for genetic tools for large scale recordings
(∼8000 units simultaneously). While mice indeed do not have as sophisticated visual systems as
primates, vision is still one of their major sensory inputs. Grayscale images were used because mice
are not sensitive to the colors relevant to human vision.

We begin by defining the similarity metric for neural responses, which we will then use to regularize
a CNN for image classification. In a first step, the raw response ρai for each neuron a to stimulus i is
scaled by its signal-to-noise ratio

wa =
σa
ηa

, (1)

which was estimated from responses to repeated stimuli, namely the oracle images. For a neuron a, the
signal strength σ2

a = Vari(Et[rait]) is the variance over stimuli i of the mean response over repeated
trials t. The noise strength is the mean over stimuli of the variance over trials, η2

a = Ei[Vart(rait)].
We denote these scaled responses by rai = waρai. The scaled population response to stimulus i is
the vector ri. Scaling responses based on signal-to-noise ratio accounts for the reliability of each
neuron by reducing the influence of noisy neurons. For example, if the responses of a neuron to the
same image are highly variable, we will ignore its contribution to the similarity metric by assigning a
small weight to it, no matter how differently it responds to different images or how high its responses
are in general.

We then shift and normalize these population responses, creating centered unit vectors ei = ri−r̄
‖ri−r̄‖

where r̄ = Ei[ri] is the population response averaged over all stimuli. These unit vectors are then
used to construct the similarity matrix, according to

Sdata
ij = ei · ej (2)

for stimuli i and j.

2.1 Stability across animals and days

Averaging the responses to the repeated presentations of the oracle images allows us to reduce the
influence of neural noise in the representation similarity metric defined in Eq. 2 and examine its
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stability across scans (i.e. different selection of neurons). When calculating similarity between oracle
images, we can average the results of different trials to reduce noise. For given image i with T
repeats, we first treat those trials as if they are different images i1, . . . , iT , and calculate similarity
against repeated trials of another oracle image j, (j1, . . . , jT ) in every combination. Oracle similarity
is defined as the mean value of all trial similarity values

Soracle
ij = Eti, tj

[
Sdata
iti jtj

]
, (3)

with Sdata
itit

= 1 excluded when i = j.

We found that the neural representation similarity between images is stable across scans and across
mice in primary visual cortex (Fig. 1A). When images (columns and rows) are ordered for better
visualization, there is a visible structure consistent across scans, revealing the clustering organization
of these images. We further index the matrix for scan h as Soracle−h

ij , and compare the fluctuation
across scans

∆Sscan
h,i,j = Soracle−h

ij − Eh

[
Soracle−h
ij

]
, (4)

and the fluctuation across repeats

∆Srepeat
h,i,t1,t2

= Sdata−h
it1 it2

− Soracle−h
ii . (5)

We observer a much narrower distribution for ∆Sscan than ∆Srepeat (Fig. 1C), suggesting that the
variability due to the selection of neurons (scans) is much lower than the single trial variability to the
same image.

2.2 Denoising neural responses with a predictive model

Most images in our experiments were only presented once to maximize the diversity of stimuli, so
Soracle is not available for them while Sdata was too noisy for our purpose. To exploit the neural
responses for non-oracle images, we first train a predictive model to denoise data. The predictive
model is consisted of a simple 3-layer CNN with skip connection [17, 18]. It takes images as inputs
and predict neural responses by a linear readout at the last layer. In addition, behavioral data such as
the pupil position and size, as well as the running speed on the treadmill are also fed to the model to
account for the effect of non-visual variables.

The predicted response for neuron a to stimulus i is denoted as ρ̂ai, which is trained to predict ρai
well [18]. The correlation between ρ̂a and ρa is denoted as va, indicating how well neuron a is
predicted. The scaled model response is defined as r̂ai = wavaρ̂ai with the sigal-to-noise weight wa

from Eq. 1, and the population response is then denoted as r̂i. The similarity matrix for scaled model
responses is calculated in the same way as Eq. 2,

Smodel
ij = êi · êj . (6)

Similarity matrices for the same set of oracle images are shown in Fig. 1B, each from a model trained
for the corresponding scan. The similarity for measured neural responses, Soracle, are also present
in the model response similarities, but the structure is more prominent for the model responses. A
scatter plot of data and model similarities, Soracle

ij versus Smodel
ij (Fig. 1D), shows a high correlation

r = 0.73, but the model similarities have a wider range. In the same plot we also showed the
correlation between Soracle and the corresponding trial similarity values Sdata from which they are
estimated, and found Smodel to be much less noisy than Sdata.

The use of model neuron responses as a proxy for the real neurons has three major benefits. First, the
outputs are deterministic, eliminating the random noise component. Second, the predictive model was
heavily regularized during training, so these deterministic responses are more likely to reflect reliable
visual features. Third, the model’s shifter and modulator circuit [17] accounted for the irrelevant
nonvisual eye and body movements, and could thereby extract more of the purely visual-driven
responses.

With the help of a predictive model, we can obtain cleaner responses for the 5000 non-oracle images
even though they are only measured once. We used the similarity matrices averaged over 8 scans
as the regularization target. Two examples of the model neural similarity for the 100 oracle images
are shown in Fig. 2. It is worth clarifying that we don’t use this 100×100 matrix in our main result
though, but only the 5000×5000 matrix from non-oracle trials. Oracle trials are used for evaluating
predictive models, assigning neuron-specific weights and demonstrations (Fig. 1 and 2) only.
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Figure 1: Representation similarity in neural data and predictive models. Image order is preserved
across all matrices. (A) Similarity matrices Soracle (Eq. 3) from real neural responses to 100 oracle
images. The structure of similarity matrices is stable across scans on different animals and days. (B)
Similarity matrices Smodel (Eq. 6) from predictive models. The backbone of representation similarity
is preserved and enhanced. (C) Variability over scans is smaller than that over repeats. (D) Similarity
values estimated from single trials are noisy (Sdata vs. Soracle, r = 0.39), but similarity calculated
from predictive models correlate with those from neural data well (Smodel vs. Soracle, r = 0.73). In
addition, Smodel spans a wider range than Soracle, makes it a better training target in practice.

3 Neural regularization by joint training

To regularize a standard machine learning model with the representation similarity matrix obtained
from neural data [19], we jointly train the model with a similarity loss in addition to its original
task-defined loss (Fig. 3, also see [20] and [21] for related approaches based on fMRI or other deep
neuronal networks, respectively). The full loss function contains two terms, defined as

L = Ltask + αLsimilarity . (7)

The first term is a conventional loss used to define the performance on the task, such as classification
or 1-shot learning. In this section, we implement grayscale CIFAR10 classification, hence we use
a cross-entropy loss. The second term is the penalty that favors brain-like representations, with a
coefficient α determining regularization strength.

For any pair of images that were shown to the mice, we already have their representational similarity
from models predicting neural data (Eq. 6). Since we are now comparing similarity for two models, a
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Figure 2: Examples of similar and dissimilar image pairs. From the similarity matrix of model neural
responses, examples of low similarity value (left pair) and high similarity value (right pair) are shown.

neural predictive model and a task model based on a convolutional neural network, we denote the
former by Sneural

ij and the latter by SCNN
ij . We want SCNN to approximate Sneural well.

We define the similarity loss for image i and image j as

Lsimilarity =
[
arctanh

(
SCNN
ij

)
− arctanh

(
Sneural
ij

)]2
. (8)

The arctanh is used to remap the similarities from the interval [−1, 1] to (−∞,∞). It is analogous
to the Fisher transform which uses the same arctanh function to compute confidence intervals for
correlation coefficients, by reparameterizing the correlations to follow nearly normal distributions.
When similarity values are not too close to −1 or 1, the loss is close to the sample based centered
kernel alignment (CKA) index [22, 23, 24].

Intuitively, SCNN is the cosine similarity of convolutional features that image i and j activate. Though
V1 responses are thought to encode low-level features, there’s no principled way to determine a priori
which single model layer corresponds to V1. Thus we flexibly combine feature similarities from
a selection of layers instead of assigning to a specific one. Specifically, we calculate similarity for
K uniformly located convolutional layers, and average the results through a trainable weight. The
weights are the outputs of a softmax function, therefore guaranteed to be positive and sum to one.
Mathematically speaking, for each of the K layers we compute the cosine similarity values as

SCNN−k
ij =

(
f

(k)
i − f̄

(k)
)
·
(
f

(k)
j − f̄

(k)
)

∥∥∥f (k)
i − f̄

(k)
∥∥∥∥∥∥f (k)

j − f̄
(k)
∥∥∥ , (9)

where f
(k)
i is the concatenated convolutional feature vector for image i at layer k, and f̄

(k)
=

Ei

[
f

(k)
i

]
is its mean over images. The final model similarity is a combination from all selected

layers

SCNN
ij =

∑
k

γkS
CNN−k
ij , (10)

where γk is a trainable probability with
∑

k γk = 1, γk ≥ 0. This means that the objective function
can choose which layer to match the similarity, but it needs to match at least one in total as enforced
by the softmax that determines γk. In principle all convolutional layers can be included, but we
only used 5 in our simulations (layer 1, 5, 9, 13, 17 in ResNet18). The preliminary analysis shows
after training one layer will dominate in Eq. 10, and it is typically layer 5, the last layer of the first
ResBlock group. More details are included in the supplementary materials.

In each step of training, we first process a batch of CIFAR images to calculate classification loss
Lclassification, and subsequently process a batch of image pairs sampled from the stimuli we used
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ResNet18

images to classify images shown to mice

Classifica�on logits Similarity predic�on

Figure 3: Joint training schematic. We trained a ResNet18 model to both classify CIFAR10 images
and predict neural similarity of ImageNet images used in our scan. The network takes either one
image or a pair of images as inputs, with a same convolutional core. If the input is one image with
the right size, the model outputs class prediction with an additional fully connected layer. If the input
is a pair of images, the model first calculate the convolutional features for both, and calculate the
similarity for a few selected layers (Eq. 10). Similarity predictions from different layers are summed
up by a trainable normalized weight to produce a final prediction, which is trained to match neural
similarity (Eq. 6). Two losses are summed with a coefficient α as the regularization strength.

in experiments, calculating the similarity loss Lsimilarity with respect to the pre-computed Sneural

matrix. The gradient of the full loss can affect the CNN kernel weights through both loss terms.

4 Results

4.1 Robustness against random noise

The similarity loss plays the role of a regularizer, and it biases the original CNN towards a more
brain-like representation. We observed that the CNN model becomes more robust to random noise
when neural regularization is used. Compared to a ResNet18 [1] trained without any regularization
(‘None’ in Fig. 4A), the same architecture equipped with the neural regularizer (‘Neural (model)’ in
Fig. 4) had substantially better performance on noisy input images (∼50% v.s. ∼20% at the highest
noise level). In other words, models whose features are more neural are less vulnerable to random
noise in inputs. To strengthen this conclusion, we also regularized the model with shuffled Sneural

matrix (‘Shuffle’ in Fig. 4) or the feature similarity matrix of the conv3-1 layer in a VGG19 model
pretrained on ImageNet (‘VGG’ in Fig. 4). This VGG layer has been reported to be most similar to
animal V1 [16]. Both regularizers improve the model robustness to some degree but neither as much
as using the neural regularizer.

Finally, we also regularized the model with a similarity matrix from the actual data directly (‘Neural
(data)’ in Fig. 4), using Sdata (Eq. 2) instead of Smodel (Eq. 6). We did not observe the same boost in
robustness. We think that this is caused by the high variability of the neural responses, highlighting
the need for a well trained predictive model. In addition, if we see the matrix in ‘Shuffle’ control as
the feature similarity of a poorly trained predictive model, the difference between ‘Neural (model)’
and ‘Shuffle’ again shows the importance of having a well trained one. Only with a strong predictive
system identification model as a denoiser were we able to reveal the underlying representational
structure hidden in the noisy neural data.

We observed the same results when training ResNet34 models on grayscale CIFAR100 datasets
(Fig. 4B). In addition, we also tested how different regularization strength will affect the model perfor-
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Figure 4: Performance robustness to Gaussian noise. (A) We tested CIFAR10 classification perfor-
mance under different levels of Gaussian noises on input images (examples below the plot) for our
jointly trained ResNet model, and compared with models with no regularization and some other
regularization. Compared to the vanilla network with no regularization (‘None’), all regularized
model have higher classification accuracy when discernible noise is added. In particular, the model
regularized with model neural similarity outperforms others on noisy images, only with a small
sacrifice on clean image performance. The error bars here are standard error of mean (SEM), with 5
random seeds used for each regularizer. The reduced improvement from ‘Neural (data)’ emphasizes
the need for a good predictive model for denoising, so that the actual neural representation structure
can be exploited. (B) Results for ResNet34 on grayscale CIFAR100 dataset are shown for ‘None’,
‘Neural (model)’ and ‘Shuffle’.

mance, and observed a continuous increase of model robustness when we tuned up the regularization.
More details are included in the supplementary materials.

All models are trained by stochastic gradient descent for 40 epochs with batch size 64. Learning
rate starts at 0.1 and decays by 0.3 every 4 epochs, but resets to 0.1 after the 20th epoch. Mean
classification accuracy for CIFAR10/100 test set over 5 random seeds is reported in Fig. 4. In our
current setting, the same number of images are passed in the classification pathway and neural
pathway, hence the time cost approximately doubles comparing to normal training. It takes about 4.5
hours on a single TITAN RTX GPU to train one model. We used PyTorch [25] for model training.

4.2 Robustness against adversarial attack

We are also interested in whether neural regularization provides robustness to adversarial attacks.
Since adversarial examples and their innocent counterparts elicit the same percept by definition, it is
highly possible that their measured neural representations are also close to each other. Hence a model
with neural representation will be more invariant to adversarial noise. We evaluated model robustness
following a recently published guideline [26] and using the well-tested attack implementations
provided by Foolbox [27].

Our evaluation metric follows [28]. In a nutshell, we strive to find adversarial perturbations (i.e.
perturbations that flip the label to any but the ground-truth class) with the minimum norm (either L2

or L∞) for each of 1000 test samples. We then compute the median perturbation distance across all
samples as the final robustness score (higher is better).

Besides the current state-of-the-art attacks on L2 [26] and L∞ [29], we also deployed a recently
developed gradient-based version of the decision-based boundary attack [30], which surpasses [26]
in terms of query efficiency and the size of the minimal adversarial perturbations. In short, [30] starts
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from a natural input sample that is classified as different from the original image (for which we aim to
generate an adversarial example). The algorithm then performs a line search between the two images
to find the decision boundary of the model. The gradients w.r.t. the difference between the two
top-most logits allow us to estimate the local geometry of the decision boundary. Using this geometry
we can compute the optimal adversarial perturbation that (a) takes us exactly to the boundary (in
case we are slightly shifted away from it), (b) stays within the valid pixel bounds, (c) minimizes the
distances to the original image, and (d) is not too far from the current perturbation (to make sure we
stay within the region for which the linear approximation of the boundary is valid). Therefore, our
gradient-based version of the decision boundary attack provides a most stringent test for adversarial
robustness of our neural network machine learning models regularized with neural data.

To ensure that we evaluate and compare all models fairly, we perform an extensive hyperparameter
search and always select the optimal combination. Since our gradient-based boundary attack proved
more effective than [26] on all models tested here, we only deployed the gradient-based boundary
attack for L2, and used Projected Gradient Descent (PGD) [29] for L∞ in our final evaluation. For
our gradient-based boundary attack, we tested step sizes of {0.0003, 0.001, 0.003, 0.01, 0.03, 0.1,
0.03}, and for PGD we tested step sizes of {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1} with iterations
of {10, 30, 50, 100, 200}.

Fig. 5 shows that regularizing models with neural representational similarity improves model robust-
ness against adversarial attacks. The model with the smallest adversarial perturbations (most fragility)
is the vanilla model trained without any regularization (median perturbation of 0.0025 (L∞) and
0.09 (L2)). Regularizing with random similarity matrix (median perturbation of 0.003 (L∞) and 0.11
(L2)) or similarity of VGG features (median perturbation of 0.0028 (L∞) and 0.11 (L2)) increases
robustness. The strongest increase in robustness, in both metrics, is provided by the regularization
with the brain’s representations learned from neural data (median perturbation of 0.0034 (L∞) and
0.13 (L2)).

We additionally did a more thorough experiment with a few more type of attacks, and looked at L0

and L1 metrics. More details are included in the supplementary materials.

0.1

0.2

0.3

0.4

0.003

0.004 None

Neural (model)

Shuffle
VGG

Regularization

Figure 5: Adversarial robustness of classifier networks according to the L2 and L∞ norms. With
more optimization queries for the attack, the minimal perturbation shrinks. Regularization improves
adversarial robustness, with neural regularization providing the best defense throughout the attacker’s
optimization. ‘Neural (data)’ regularizer is not tested.

We observed increased robustness across several metrics, which is quite remarkable given that current
defense methods, in particular adversarial training, tend to overfit strongly on the metrics on which
they are trained on [28] and are often less robust on other Lp metrics than undefended models.

5 Conclusion and discussion

Neuroscience has often provided inspiration to machine learning, but it lacks methods to directly
translate neurophysiological recordings into an improvement of artificial neural networks. Here,
we have shown that regularization with neural data proves to be a promising tool to create an
inductive bias towards more robust inference. In particular, the mouse brain has evolved an image
representation that is capable of performing difficult machine learning tasks, but is more robust than
conventional models. Specifically, we demonstrated that when these measured representations are
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incorporated into a general machine learning model by matching representational similarity, they
enable more robust machine learning algorithms (robustness to random noise and adversarial attacks).
Critically, our predictive computational model provided a better assessment of representation than
raw neural data, because it disentangles non-visual features from visual ones, and transforms the
isolated visual features into a reliable, de-noised version of neural responses. This model-based
representation proved useful as a regularization target for machine learning models. We conjecture
that by regularizing machine learning models further to match representational similarities with higher
order visual areas beyond V1 will further enhance the robustness and generalization performance
outside the training set. These brain-like representations may help machine learning algorithms
ultimately reach human-like performance.

There are at least two ways to regularize CNN models to favor neural representations. One is to learn
the similarity for any pair of images, like our approach here. The other is to jointly train a linear
readout from intermediate layers of CNN to predict neural responses directly. However, we argue
that the former is a tighter constraint since a wide range of affine transformations in the CNN could
be compensated by the linear readout, producing identical predictions for the neural responses while
substantially altering the underlying representational similarity in the CNN. For this reason, we chose
to regularize our machine learning models to match the representational similarity.

Though the improvement of adversarial robustness by neural regularization is substantial and sig-
nificant, unsurprisingly, the current state-of-the-art in terms of robustness on L∞ [29] remains
substantially more robust than our neurally regularized but otherwise undefended model (0.029 vs
0.0034). That said, [29] employs an expensive adversarial training procedure that—in contrast to our
method—specifically aims to optimize robustness against L∞ perturbations. As a side effect, [29]
performs significantly worse on metrics it has not been trained on, such as L2 or L0 [28] while our
method does not overfit on one specific metric. Combining the neural regularization with adversarial
training procedure [29] could potentially lead to even stronger defenses.

The neural regularization is not designed to improve model robustness, but rather to bias any model
to have neural features. We expect to see other benefits with such inductive bias, such as improved
generalization in domain transfer, lower sample complexity in few-shot learning, and so on. While
more systematic analysis is continuing, preliminary results indeed have shown improvement by neural
regularization in those aspects as well.

To bias CNN features towards a more brain-like representation, we matched the pairwise cosine
similarity for a given set of inputs in this study. But this is just one approach of manifold matching in
a more general sense [31]. We will explore other metrics or higher-order dependencies in the future.

While our results indeed show the benefit of adopting more brain-like representation in visual
processing, it is however unclear which aspects of neural representation make it work. We think that
it is the most important question and we need to understand the principle behind it. There are two
approaches that we are currently working on. The first is to directly compare the regularized models
and the vanilla ones by investigating the features they use. We will look into the tuning property
of model units by finding the input patterns that maximally excites these units, and examine how
neural regularization makes a difference. The second is to identify which neurons are useful for a
more robust representation. We can either find the subset of neurons that are most important in the
similarity metric and look for their common properties. Or we can propose some criterion to select a
particular set of neurons and check whether using those neurons alone can obtain the same robustness
gain. If we manage to understand why neural regularization works, we’ll be able to design or train
machine learning models just with the underlying principles, without actually performing large-scale
neural recordings.

A docker image containing all codes and trained models is prepared (zheli18/neural-reg:neurips19),
with a jupyter lab as entrypoint.
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Robustness dependence on regularization strength

The training objective is a combination of task loss and similarity loss, with a relative weight α in
L = Ltask +αLsimilarity. We tested a range of α values, and observed a continuous change in model
performance (Fig. 6). Here similarity matrix is estimated using just one scan, while results in the
main text are using averaged similarity matrix from eight scans. α = 20 was used in the main text,
qualitatively same as the α = 16 shown here. For each α, 2 or 3 random seeds were used.
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Figure 6: Robustness to Gaussian noise at different regularization strengths. α = 0 is the ‘None’
condition in main text, which is mostly occluded by α = 2 here. As neural regularization is more
strongly applied, the model performance on noisy inputs becomes higher.

Combination weights for CNN model similarity

We used a trainable weight γk (Eq. 10 in main text) to combine feature similarity of different
convolutional layers to the final similarity of the full model. We design γks to be the outputs of a
softmax function, and have the same initial values. In our simulations, K = 5 layers are selected,
hence γk = 0.2 for k = 1, 5, 9, 13, 17 in the beginning of training.

We observed that after joint training, γk usually collapse to only one layer. Namely γk ≈ 1 for one
layer, and close to 0 for the others. We think this is a direct result from the competitive nature of our
weight design. As long as one layer is selected to resemble the neural feature space, the joint training
algorithm will keep pushing it towards the target. The identity of the selected layer, which is usually
the easiest one to adjust to neural feature space, is not deterministic. We investigated final weights for
models in Fig. 6, and the averaged weights are listed in Tab. 1.

For example, γ5 = 0.67 for α = 16 actually corresponds to that 2 out of 3 random seeds result in a
trained model with γ5 = 1. Though there exists stochasticity in the choice of layers, the possible
ones are usually nearby in terms of their locations in the deep network. Admittedly, more simulations
are needed to be conclusive.

More extensive tests on adversarial robustness

We performed a much more thorough tests on our trained models with two more metrics and six
more attacks after the submission. The models being tested here (‘None’, ‘Shuffle’ and ‘Neural’) are
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Table 1: Averaged weights for all candidate layers.

γ1 γ5 γ9 γ13 γ17

α = 0 0.2 0.2 0.2 0.2 0.2
α = 2 0 1 0 0 0
α = 4 0 1 0 0 0
α = 8 0 0.33 0.67 0 0
α = 16 0 0.67 0.33 0 0
α = 32 0.5 0.5 0 0 0

also newer version since we improved the neural predictive model since then. In short, more reliably
measured neurons are weighted even more now, which in theory makes the neural similarity matrix
less noisy.

The evaluation of the models follows the evaluation scheme of [32]. We tested all models on four
different Lp metrics (L0, L1, L2 and L∞) with different state-of-the-art attacks (see below). Every
model/attack combination was evaluated on 1000 samples from the CIFAR-10 validation set and we
used the same subset for all models. Then, on each sample and on each model/attack combination
each attack was run five times for each hyperparameter setting we tested in an untargeted attack
scenario. For each attack we tested a range of hyperparameters to ensure optimal performance. We
used attacks as implemented in Foolbox [27]. To gather the final distortion sizes shown in Fig. 7
we determined the smallest Lp distance for each sample and for each model/attack combination
across all tested hyperparameters and repetitions. We hope that this scheme approaches as closely as
possible the true minimal adversarial distance. We then average this minimal adversarial distance
over all 1000 samples to determine model robustness.
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Figure 7: Adversarial robustness for ResNet18 models on grayscale CIFAR10 dataset. Models with
no regularization (‘None’), regularized to shuffled similarity matrix (‘Shuffle’) and to neural similarity
matrix (‘Neural’) are tested for four metrics. Neural regularization increased model robustness to
adversarial perturbations for L0, L1 and L∞.

Across L1, L2 and L∞ we observe a market increase in robustness compared to baseline and control
networks. This increase is unlikely to be caused by gradient-masking given that adversarial attacks
work equally well on all models on the L0 norm. At the same time, L0 is also a special metric in the
sense that it introduces strong deviations between original and adversarial image which are also the
most noticeable for humans.

The attacks that we applied to the models are as follows:

• Projected Gradient Descent (PGD) [29]. Iterative gradient attack that optimizes L∞ by
minimizing a cross-entropy loss under a fixed L∞ norm constraint enforced in each step.
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• Projected Gradient Descent with Adam (AdamPGD) [33]. Same as PGD with but Adam
Optimiser for update steps.

• C&W [26]. L2 iterative gradient attack that relies on the Adam optimizer, a tanh-nonlinearity
to respect pixel-constraints and a loss function that weighs a classification loss with the
distance metric to be minimized.

• Decoupling Direction and Norm Attack (DDN) [34]. L2 iterative gradient attack pitched as
a query-efficient alternative to the C&W attack that requires less hyperparameter tuning.

• Saliency-Map Attack (JSMA) [35]. L0/L1 attack that iterates over saliency maps to discover
pixels with the highest potential to change the decision of the classifier.

• Sparse-Fool [36]. A sparse version of DeepFool, which uses a local linear approximation of
the geometry of the decision boundary to estimate the optimal step towards the boundary.

• Brendel&Bethge [32]. Novel family of L0/L1/L2/L∞ attacks that follow the boundary
between the adversarial and non-adversarial region which has been demonstrated to be
state-of-the-art on all tested Lp norms.
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