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Abstract

Sensory observations about the world are invariably ambiguous. Inference about
the world’s latent variables is thus an important computation for the brain. How-
ever, computational constraints limit the performance of these computations. These
constraints include energetic costs for neural activity and noise on every channel.
Efficient coding is one prominent theory that describes how such limited resources
can best be used. In one incarnation, this leads to a theory of predictive coding,
where predictions are subtracted from signals, reducing the cost of sending some-
thing that is already known. This theory does not, however, account for the costs or
noise associated with those predictions. Here we offer a theory that accounts for
both feedforward and feedback costs, and noise in all computations. We formulate
this inference problem as message-passing on a graph whereby feedback serves
as an internal control signal aiming to maximize how well an inference tracks
a target state while minimizing the costs of computation. We apply this novel
formulation of inference as control to the canonical problem of inferring the hidden
scalar state of a linear dynamical system with Gaussian variability. Our theory
predicts the gain of optimal predictive feedback and how it is incorporated into
the inference computation. We show that there is a non-monotonic dependence of
optimal feedback gain as a function of both the computational parameters and the
world dynamics, and we reveal phase transitions in whether feedback provides any
utility in optimal inference under computational costs.

1 Introduction

A critical computation for the brain is to infer the world’s latent variables from ambiguous observa-
tions. Computational constraints, including metabolic costs and noisy signals, limit the performance
of these inferences. Efficient coding [1] is a prominent theory that describes how limited resources
can be used best. In one incarnation, this leads to the theory of predictive coding [2], which posits
that predictions are sent along feedback channels to be subtracted from signals at lower cortical areas;
only the difference returns to the higher areas along feedforward channels, reducing the metabolic or
informational cost of sending redundant signals already known to the higher areas. This theory does
not, however, account for the additional costs or noise associated with the feedback. Depending on
the costs for sending predictions and the reliability of signals encoding those predictions, we expect
different optimal strategies to perform computationally constrained inferences. For example, if the
feedback channel is too unreliable and expensive, we hypothesize that it is not worth sending any
predictions at all. Here we offer a more general theory of inference that accounts for the costs and
reliabilities of the feedback and feedforward channels, and the relative importance of good inferences
about the latent world state. We formulate the inference problem as control via message-passing
on a graph, maximizing how well an inference tracks a target state while minimizing the message
costs. Messages become control actions with their own costs to reduce while improving how well
an inference tracks a target state. We call this method inference as control, as it flips the interesting

Preprint. Under review.



perspective of viewing optimal control as an inference problem [3]. We solve this problem under
Linear-Quadratic-Gaussian (LQG) assumptions: Linear dynamics, Quadratic state and control costs,
and Gaussian noise for the process, observations, and messages. Our theory enables us to determine
the optimal predictions and how are they are integrated into computationally constrained inference.
This analysis reveals phase transitions in when feedback is helpful, as we change the computation
parameters or the world dynamics.

2 Related work

Our work brings together several related theories: Bayesian inference, efficient coding, and predictive
coding. The idea that the brain performs Bayesian inference about latent variables amid uncertain
sensory observation has been long studied in neuroscience [4–7]. Bayesian inference involves
optimally combining prior information from the past or from surrounding context with the likelihood
of current sensory observations [8–11]. The theory of efficient coding [1, 12–15] focuses on encoding
the sensory observations themselves, capturing maximal information subject to limited biological
resources. The theory of predictive coding [2] tackles such resource constraints by using top-down
feedback predictions to suppress the part of sensory observations that is already known to the
brain, and sending only the novel part of the observation back to the brain [16–21]. Understanding
the utility of predictive feedback has also shown promise in gaining insights into deep learning
algorithms and improving their performance, recently drawing wide interest in this topic [22–29].
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Figure 1: Resource constrained inference mod-
eled as a control problem. A: Graphical model of
the inference problem, tracking a latent state in
a Hidden Markov Model. B: Expanded inference
problem, indicating prediction as control.

Park et al. [30] brought together the ideas of a
Bayesian brain and efficient coding, by identifying
efficient neural codes as optimizing a posterior dis-
tribution while accounting for limited firing rates.
Chalk et al. [18] unified theories of predictive cod-
ing, efficient coding, and sparse coding by showing
how these regimes emerge in a three dimensional
constraint space described by channel capacity, past
information content about the world state, and the
time point to which the estimate is targeted. Mły-
narski et al. [31] investigated how sensory coding
can adapt over time to account for the trade-off of
an inference cost against a metabolic cost for high-
fidelity encoding. Aitchison et al. [32] argued that
Bayesian inference can be achieved using predictive
coding, but is not necessary. While these works made
important contributions towards unifying different
encoding schemes that are optimal under different
circumstances, they all assume that information is
costly but computation is free. In particular, none
of them have explicitly accounted for biological con-
straints along the feedback channel as well. In our
work, we discuss how the optimal strategy changes
when balancing inference performance against ener-
getic costs, when there is noise in both feedforward
and feedback pathways.

3 Defining the problem

We consider an inference task in which the brain tracks a latent world state xt based on its noisy
sensory observations ot (Fig 1A). The trajectory of the world state follows a known stochastic linear
dynamical system (Eq 1) with Gaussian process noise and Gaussian observations (Eq 2). At each
time step, the brain sends a top-down prediction pt based on its best estimate x̂t−1 based on evidence
up until the previous time step (Eq 3). The prediction is then sent through an additive white Gaussian
noise feedback channel to the sensory level (Eq 4). The noisy prediction p̃t is then combined with
the new observations ot to form a residual ∆t (Eq 5). The residual is then sent through an additive
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white Gaussian noise feedforward channel to the brain (Eq 6). Based on this noisy residual ∆̃t and
the prediction it had just sent, the brain updates its estimate x̂t (Eq 7). A graphical representation of
these dynamics is shown in Fig 1B.

Structurally, these dynamics are equivalent to a Kalman filter. The most common representation of
this filter might even be viewed as predictive coding, as the update step uses the residual between
the predicted and actual observation. However, the Kalman filter has no costs aside from the final
inference, and no computational noise except the observation. Biological computation therefore may
weigh fundamentally different tradeoffs in its inferences. Our goal is to find the parameters that
minimize a weighted combination of inference loss, feedback energy cost, and feedforward energy
cost (Eq 8) given limitations caused by computational noise.

We optimize the following parameters: the gain L on the previous inference that is integrated into
the new prediction; the prediction multiplier D and observation multiplier E that describe how the
noisy prediction and the observation are weighted to form the residual; and the parameters F , G, and
H that determine how the inference is updated in light of the new noisy residual. The optimization
is done at steady state, assuming the observer must continually update its estimate in a stationary
dynamic environment. For mathematical tractability, we assume that all messages are linear functions
of their inputs, the three losses are quadratic, the weight on the inference loss is a scalar, and all noise
is independent Gaussian white noise. The equations governing this problem are:

xt =A xt−1 + ηtp state dynamics (1)

ot =C xt + ηto observation (2)

pt =L x̂t−1 prediction (3)

p̃t =pt + ηtb noisy prediction, feedback (4)

∆t =D p̃t + E ot residual (5)

∆̃t =∆t + ηtf noisy residual, feedforward (6)

x̂t =F x̂t−1 +G ∆̃t +H pt estimation (7)

Costtot = lim
T→∞

1

T

T∑
t=1

∥∥xt − x̂t∥∥2︸ ︷︷ ︸
Costinf

+ p̃t
>
Wb p̃

t︸ ︷︷ ︸
Costb

+ ∆̃t>Wf ∆̃t︸ ︷︷ ︸
Costf

 (8)

We consider how the optimal computational strategy varies with cost-weights (Wb,Wf ) that determine
the relative importance of feedback, feedforward, and inference costs (Costb, Costf , and Costinf ).
ηp, ηo, ηb, and ηf represent the process noise, observation noise, feedback noise, and feedforward
noise with variances σ2

p, σ2
o , σ2

b, and σ2
f respectively. We will see below that certain combinations of

parameters determine the system’s behavior at transition points.

4 Method: Inference as Control

We adopt a two-step approach to solve the optimization problem in Eq 8. First we fix the parameters
D and E that determine how the feedback is used to subtract predictions, and solve in closed form for
the optimal feedback gain (L) and optimal integration of residuals (F , G, H) as a function of the fixed
parameters. We then numerically optimize for D and E, given the optimal feedback. Mathematically,
we write

min
D,E,L,F,G,H

Costtot = min
D,E

(
min

L,F,G,H
Costtot

)
(9)

with an argmin determined analogously.

In order to find the closed form solution for fixed D and E, we recast the minimization as an LQG
control problem [33] where the prediction is treated as an internal control. The LQG dynamical
Eqs 10-11 are obtained by concisely writing Eqs 1-2, and 4-6 in terms of an augmented state
zt =

[
xt ∆̃t

]>
(see Appendix A.1). Augmented dynamics, control, and measurement matrices
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Aaug, Baug, Caug, and the noise vector ηaug are expressed in terms of D and E. The feedforward
and feedback energy costs are expressed as the LQG state and control costs respectively (Eq 12,

derived in Appendix A.2), where Q =

[
0 0
0 Wf

]
, and R = Wb.

zt =Aaug z
t−1 +Baug p

t + ηt−1
aug (10)

∆̃t =Caug z
t (11)

min
p

lim
T→∞

1

T

T∑
t=1

zt>Q zt︸ ︷︷ ︸
state cost

+ pt
>
R pt︸ ︷︷ ︸

control cost

 (12)

Note that in the above LQG objective function (Eq 12), the inference cost is not explicitly added.
However, by invoking the separation principle [33], we show in Appendix A.3 that for a fixed D and
E the LQG solution automatically minimizes the inference cost as well. The separation principle
states that at each instant the observer needs to first make an optimal estimate of the world state, and
then use this estimate to form the optimal control. Furthermore, we show in Appendix A.4–A.6 that
the LQG solution also provides the optimal F,G,H,L, and Costtot in terms of D and E. These are
denoted as F ′, G′, H ′, L′, and Cost′tot respectively. Finally, we numerically optimize Cost′tot with
respect to D and E to solve the complete problem.

5 Results

In this paper we analyze our system for a one-dimensional world state to gain precise mathematical
insight into the core computational problem. One useful perspective is that the feedback signal
functions as a kind of self-control for the inference system. As we formulated the problem, this
control has its own “action cost,” and this allows us to use the known solutions for controllable
systems to identify the optimal feedback. The control gain L is therefore a fundamental parameter, as
it indicates whether it is best to send a prediction (L 6= 0) or not (L = 0). The control gain always
takes the opposite sign as the product of prediction-multiplier and observation-multiplier, ensuring
that the prediction is subtracted from the observation, which thereby reduces the feedforward cost.
However, when the optimal control gain is 0, the prediction-multiplier D also becomes 0 so feedback
noise does not corrupt the observation if no prediction is sent.

Fig 2 shows how the optimal control gain, prediction-multiplier D and observation-multiplier E
change with different parameters that define the constraints involved. We observe that there are cases
where feedback and feedforward messages are useful, and others where messages are harmful.

5.1 Conditions for the Feedforward and Feedback Messages to be Useful

If the costs and noise are high, then it is not useful to send any messages forward at all. To
understand this quantitatively, we consider what happens without feedback (D = 0). Sending even an
infinitesimal feedforward message about the observation to the brain is worth its feedforward energy
cost if and only if

(1−A2)
Ufn

Us
<

1

1 + 1
SNR o

(13)

where Ufn = Wfσ
2
f is the feedforward noise cost, i.e. the cost incurred by the noise variance in

feedforward messages. Us =
σ2
p

(1−A2) is the steady state signal power, and SNRo =
σ2
p

(1−A2)
C2

σ2
o

is the
observation Signal to Noise Ratio. When the left and right hand sides of Eq 13 are equal, the optimal
strategy is indifferent between sending feedforward messages or not. Eq 13 is derived by finding
when there exists a non-zero observation multiplier that minimizes the total cost in the absence of
feedback. We know that the derivative of the total cost at the optimal non-zero E, when it exists,
should be 0. We set this derivative to 0 and then use Descartes’ rule of signs to find when such a
non-zero root exists. This yields the condition in Eq 13.

Next we consider the case where feedback is allowed. If the optimal prediction-multiplier is zero,
then it is the same as no feedback, so by assumption the optimal observation-multiplier is non-zero
if and only if feedforward is useful (Eq 13 holds). If the optimal prediction-multiplier is non-zero,
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then naturally the feedforward evidence must also be non-zero to have any signal worth predicting.
Furthermore, we also see that when sending feedback is optimal, it must be worth sending some
feedforward messages even if the provision for sending feedback is cut off. These purely feedforward
messages might need to be smaller — as small as the residuals when we had feedback — but sending
at least some information is evidently worth the cost, since it was worth paying that feedforward cost
even when noisy feedback corrupted the inference. Thus, mathematically, feedforward messages are
useful if and only if Eq 13 is true, both with and without feedback.
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Figure 2: The best use of predictions and observations de-
pends on the world state dynamics and channels’ noise and
energetic costs. For tolerable feedback noise cost, as we in-
crease either the A: feedforward noise, or the B: feedforward
weight, the optimal strategy transitions from sending only
feedforward, to predictive coding, back to only feedforward,
and finally to no messages. For moderate feedforward noise
cost, as we increase either the C: feedback noise, or the D:
feedback weight, the optimal strategy transitions from predic-
tive coding to feedforward messages only. When we increase
either the E: measurement gain, or the F: process noise, or
the H: world state timescale, the optimal strategy transitions
from silence, to only feedforward messages, to predictive cod-
ing. G: Increasing the observation noise leads to the opposite
sequence of optimal strategies.

Eq 13 implies that feedforward messages
are worth their energy cost when either the
observations are very reliable (high SNRo),
or when the relative cost of sending an ar-
bitrarily small feedforward message is low
(small Ufn/Us).

Similarly, using reasoning described in Ap-
pendix A.7, we find that feedback is valu-
able when

Ubn < Φ(Ufn, A, σ
2
p,
C2

σ2
o

), (14)

where Φ is a complicated function that
involves solving for a quartic equation.
Ubn = Wbσ

2
b is the feedback noise cost,

i.e. the cost incurred by the noise variance
in feedback messages. In Fig 3A, Φ (solid
yellow line) is plotted as a function of the
feedforward noise cost. Where Eq 14 holds
as an equality (feedback and feedforward
noise costs that correspond to points on the
yellow line), an optimal observer is indif-
ferent about sending feedback messages.
Sending feedback is useful below that line,
and harmful above it.

As stated above, when sending feedback is
optimal (Eq 14 satisfied), it must be worth
sending feedforward messages even if the
provision for sending feedback is cut off
(Eq 13 holds true). This is indeed observed
in Fig 3A, where the dashed line is the lo-
cus of points where the optimal strategy
is indifferent to sending feedforward mes-
sages: to the left, sending feedforward mes-
sages is useful, and to the right, it is not. As
expected, the region where feedback is use-
ful is also where feedforward messages are
useful. Also, for very small feedback noise
cost, the only case where sending feedback
becomes harmful is when sending even an
infinitesimal feedforward message is not
useful either. As a result, the feedback in-
difference curve ends exactly at the precise feedforward noise cost where the optimal strategy is
indifferent to sending feedforward messages. Fig 3B shows a magnified version where feedforward
and feedback products are near zero. At the origin, feedforward and feedback messages are free
and/or noiseless. A noiseless message can be arbitrarily small and still convey information, so the
cost can be arbitrarily small. In this case, there is nothing to gain or lose by subtracting predictions, so
even free feedback makes no difference to costs or inferences. Thus the feedback indifference curve
starts at the origin. Fig 3B also demonstrates that for feedback to be useful, the feedback channel
should be cheaper and/or less noisy than the feedforward channel. Note that this is true regardless of
parameter values (world state timescale, measurement gain, etc.).
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The exact solution for the optimization in Eq 9 depends on all the parameters that describe the
dynamics (Eqs 1–7). However, from Eqs 13–14, we see that only certain combinations of parameters
categorically determine if feedforward and feedback messages are useful. The relevant factors are
feedback noise cost, feedforward noise cost, world state timescale, process noise variance, and the
ratio of the measurement gain to the standard deviation of the observation noise. The feedforward
(feedback) noise variance and feedforward (feedback) weights affect the optimal strategy only through
their product, which we call the feedforward (feedback) noise cost. Increasing the channel noise
means we need higher amplification and thus higher cost to achieve the same reliability; conversely,
increasing the weight makes the channel more expensive for the same amount of amplification.
Finally, the optimal strategy depends on the measurement gain and observation noise only through
their ratio, (SNRo), which determines the quality of observations.
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Figure 3: Boundary curves divide the space of feedback and feedforward noise costs into regions of categorically
different optimal strategies. A: Predictive coding is favored below the solid yellow line, feedforward efficient
coding is favored above it, and no messages are favored to the right of the dashed line. B: The boundary curve
determining whether feedback is useful lies below the line (cyan) along which the feedback and feedforward
noise costs are equal, implying that for predictions to be useful the feedback channel must be cheaper and/or
less noisy than the feedforward channel. C: With increasing predictability (thinner lines) of the world to be
inferred, boundaries between coding strategies shift upwards and rightwards. As the predictability increases
for a fixed value of channel parameters (dot), the optimal strategy transitions from sending no messages, to
sending only feedforward messages, to sending and subtracting predictive feedback messages. D: An example
of the shift in boundary curve with increasing predictability is shown for different world state timescales. As
the timescale increases, the memory of the world state increases along with the SNR at the observation level,
thereby increasing the predictability. E: A similar example is shown for different measurement gains. As the
measurement gain increases, the observation SNR increases, thereby increasing the predictability.

5.2 Transitions in the Optimal Strategy

Having seen above how there are categorically different optimal strategies for computationally
constrained inference, we now examine how individual parameters move the system between these
strategies. We broadly group the parameters into three categories: feedforward, feedback, and sensory.

Feedforward parameters: We first consider the case of low to moderate feedback noise cost. Fig 4
illustrates the transition between optimal strategies as a function of the feedforward and feedback
noise costs. The black line on Fig 4 left traces the transition as we increase the feedforward noise cost
for a fixed feedback noise cost. For low values of the feedforward noise cost, feedforward messages
are almost free, so the system does not save appreciable resources by sending predictions; even worse,
noisy feedback would corrupt the signal with noise. Thus for low feedforward noise costs it is optimal
to send no predictions. As this cost increases, at some point it becomes equally valuable to send or
withhold a feedback message. For higher feedforward noise costs, we cross the point of indifference,
to where feedforward messages are important yet their channel is not economical by itself. Predictive
feedback then becomes preferable, even when accounting for additional feedback noise.

As feedforward noise cost increases, reliable transmission through the channel becomes less af-
fordable. As a consequence, the inference degrades. Upon increasing the feedforward noise cost
beyond a certain point, the inference becomes so poor that it is no longer possible to make a good
prediction worthy of the cost it incurs. Thus the system resorts to sending only feedforward messages.
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Figure 4: Phase transition in the value of feedback. Left: Optimal control gain varies with channel parameters,
specifically the noise cost for the feedback and feedforward channels. As the feedforward noise cost increases
(black line), the optimal strategy transitions non-monotonically from sending only feedforward messages, to
predictive coding with suppressive feedback, back to sending only feedforward messages, and eventually to
sending no messages. The yellow curve on the panel is the phase transition for feedback: the locus of points
where the optimal strategy is indifferent to sending feedback (green area) or not (red area). Near the critical
point (colored circles), the loss function goes through a phase transition [34], seen at Right: The cost function
has a minimum at Prediction-multiplier D = 0 for low feedforward noise cost, favoring no feedback (red). But
as the feedforward noise cost increases from low to moderate values, this extremum switches to a maximum,
with nearby minima that favor feedback with nonzero D (green). Right at the transition point [34], the system
becomes indifferent to feedback (yellow). Another phase transition occurs in the opposite direction as the
feedforward noise cost increases further from moderate to high values.

For similar reasons, as the world becomes more predictable (Fig 3C), there is a wider range of
feedforward and feedback noise costs for which sending predictions is optimal. The predictability can
be increased either by lengthening the world state timescale, or by enhancing the observation SNR,
enabling better inferences and thereby better predictions. Figs 3D–E demonstrates this for different
world state timescales and measurement gains respectively. However, for large enough feedforward
noise cost, sending even feedforward messages alone becomes too expensive/noisy, and so it is best
to remain silent.

Fig 2A and B show how the optimal control gainL, prediction-multiplierD and observation-multiplier
E change with feedforward noise and feedforward weight respectively. As only the product of noise
variance and weight determines the transition in optimal strategy, we observe the same trend as either
one of them increases. However, these parameters actually exhibit different effects away from the
points of transitions. For example, when feedforward noise is close to 0, the system can save costs by
attentuating the signal (E → 0) and still beat the negligible feedforward noise. In contrast, in the
extreme case that the feedforward messages are nearly free (Wf → 0), the observation-multiplier
increases arbitrarily (E →∞) to dominate any feedforward noise, improving the inference at no cost.
These limiting cases provide helpful intuitions. Naturally, the challenging regime is in the middle,
where there are real tradeoffs to make, and where feedback becomes relevant.

For the limiting case where feedback noise cost is extremely high, the feedback channel is too
expensive/noisy to be used. Hence, as we slowly increase the feedforward noise cost from zero, we
start by sending just the feedforward messages until the feedforward channel is too expensive/noisy,
at which point we no longer send any messages.

Feedback parameters: We first consider the interesting case of low to moderate feedfoward noise
cost. For low values of feedback noise cost we are in the regime where feedback is cheap and/or
noiseless, and hence it is beneficial to send both predictive feedback and feedforward residual
messages. But when the feedback noise cost becomes too high, sending predictions become too
expensive/noisy, so it is best send only feedforward messages. This is shown in Fig 2C, D. Analogous
to the feedforward case, although the same transition in optimal strategy is observed as we increase
either the feedback noise or feedback weight, these parameters actually exhibit different effects away
from that transition. For example, L → 0 when feedback noise is close to 0, and L → −∞ when
feedback weight is close to 0.

In the case of extremely high feedfoward noise cost, it is not worth sending even an infinitesimal
feedforward message, so the optimal strategy is to not send any messages.
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Sensory parameters: Fig 3C shows the boundary between strategies for three systems with different
levels of predictability. For a fixed value of feedback and feedforward noise costs (dot), the optimal
strategy changes with the predictability. With unpredictable dynamics (thick curve), the dot lies in the
region where sending no messages is optimal, since the feedforward channel is relatively poor (right
of the thick dashed line). For a slightly higher predictability, the dot lies within the region where
feedforward-only messages are optimal (above medium curve, but left of the corresponding dashed
line). And for even higher predictability, the dot lies in the region where predictive coding is optimal
(below the thin curve). Hence, as the predictability increases, there is a transition from sending no
messages, to sending just feedforward messages, to sending both feedback and feedforward messages.

Similarly, if either the measurement gain or the process noise increases, this would yield a higher
observation SNR, which would then improve the inference and thereby predictability. Fig 2E–F
shows the resultant transitions from no messages, to feedforward-only messages, then to predictive
feedback, with increasing measurement gain or process noise. Increasing observation noise has the
opposite effect, making observations less reliable and thereby reducing the predictability. Fig 2G
shows the transitions in strategy with increasing observation noise. Finally, increasing the world
state timescale increases the predictability since it increases both the memory of the system, and the
observation SNR. Fig 2H reveals the familiar sequence of transitions in strategy, supporting our core
intuitions about when feedback is valuable.

6 Discussion

In this paper, we define a new class of dynamic optimization tasks that more accurately capture
essential biological constraints on inference in the brain, by including cost and noise for each
recurrently connected computational element. We solve this optimization problem by modeling
inference as a control problem with prediction as self-control. The resultant optimization provides
nontrivial predictions for when we expect suppressive feedback as a function of biological constraints,
computational costs, and world dynamics.

Predictive coding is a promising theory for brain computations [35–39], and a variety of experimental
studies have indeed shown predictive suppression effects in neural responses [40–47]. However,
neural responses vary in how much they are suppressed depending on a context and signal to noise
ratio. Variants aiming to explain these effects all neglect the computational costs associated with
predictive coding, even though those costs were part of the motivation for saving metabolic costs in
the first place.
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Figure 5: Example of an experiment
to validate our theory. Our predictions
for predictive response suppression as
as function of world state timescale and
observation SNR (decreasing with line
thickness).

Although we contend that it is costly to send predictions, if
these predictions are based on inferences that are already being
computed for a task, then is it really an extra cost to send
them as predictions? Yes, because distinct neurons are used
to send feedforward and feedback signals, so the brain might
pay costs twice for the same inference. When beneficial, the
brain could avoid the duplicate feedback costs by silencing the
feedback neurons, and send its inferences to higher brain areas
only through its feedforward neurons. A related question arises
for feedback suppression, which is presumably implemented
through inhibitory neurons. What is the benefit of turning
on an inhibitory neuron just in order to turn off an excitatory
neuron? Excitatory neurons outnumber inhibitory neurons by
4:1, so few inhibitory neurons can suppress many excitatory
ones, amounting to a potentially substantial savings. These
biological constraints could be used in future elaborations of computationally constrained inference
models.

One core prediction is that predictive coding grows more favorable when feedforward noise cost is
greater than feedback noise cost. Why would such an asymmetry exist? Biologically, asymmetries
in these noise costs can arise from differences in feedforward and feedback anatomy or functional
properties. Anatomically, feedback projections generally outnumber feedforward ones by 2:1, but the
feedforward pathways compensate with greater weight, dominating at short cortical distances and
leveling off at longer distances [48]. Functionally, the sparser, stronger feedforward channels therefore
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have less ability to average away the noise, leading to a relatively higher amount of metabolically
expensive activity caused by noise, and thus to a higher noise cost. This could establish conditions
under which predictive feedback is useful.

Our mathematical system’s crucial theoretical parameters relate to biological quantities in three ways:
as context-dependent parameters (time constant of the stimulus dynamics, sensory SNR), as neural
parameters that could potentially be manipulated experimentally (feedforward and feedback SNR),
and as developmentally-fixed parameters of the system (feedforward and feedback architecture).
Testing our predicted dependence on these three types of parameters requires different considerations.

The context-dependent parameters are by far the easiest to manipulate experimentally. One can
control the stimulus to adjust the observations’ SNR and the world state timescale, and measure
whether any response suppression is modulated by these controlled parameters as shown in Fig 5.

The internal computational parameters like neural noise may be controllable through stimulus changes
or experimental techniques of causal manipulation. Electrical or optogenetic stimulation could directly
inject neural variability. Another approach could be based on the fact that neural noise variance
tends to increase with firing rate. Thus, one could test our predictions about computational noise
by elevating firing rates. Such methods could include providing a background sensory stimulus, or
direct neural stimulation to increase baseline activity. In any case, it would be important to apply
either natural manipulations or chronic unnatural ones to give the brain enough time and experience
to optimize its computations.

For the developmentally fixed parameters like architecture, we cannot easily alter the system experi-
mentally, and it may be unreasonable to assume that properties in a real biological system can be
unambiguously mapped to any particular value in our abstract theoretical system. However, we can
compare between brain systems or species with architectural difference, and test whether functional
properties covary with those differences as predicted by our theory. Thus it may be fruitful to compare
between brain areas with different architectures, such as 3-layer paleocortex (e.g. olfactory cortex)
versus 6-layer neocortex (e.g. auditory or visual cortex), or within neocortical areas with different
properties. It may also be fruitful to compare between organisms with different architectures (e.g.
mammals versus reptiles). These architectures have different microcircuits with distinct feedforward
and feedback projection neurons. For example, feedback in different visual and motor cortical
systems tends to target different inhibitory cells [49] which have different noise levels [50, 51]. We
predict that systems with more feedback noise (e.g. SOM versus VIP) would have less predictive
suppression, as observed experimentally [49].

There are several interesting avenues for generalizing our theory. The proposed inference as control
method can be extended to the more general case of observer taking external actions in addition to
the internal predictions, in order to maximize external rewards while minimizing both external action
costs (e.g. movements) and internal computational costs. This could be modeled as a typical LQG
control problem [52] for external variables by including appropriate entries in matrices Q, R, and
Baug in addition to the internal controls we use for predictive coding. Though our results are limited
to just a simple one dimensional linear dynamics with uncorrelated noise, our future work will explore
these computational constraints in more complex multivariate and nonlinear tasks. Accounting for
graph-structured inferences [53] and controllability [54] may provide additional constraints on the
brain’s inference processes, and additional predictions for experiments.

Residuals between predictions and observations are useful not just for improving inferences, but
also for learning, which this work does not address. In principle, a multivariate generalization
could explain such computations as hierarchical inferences or adaptation where slower changes are
also subject to prediction. However, the process of learning (as opposed to adaptation) occurs out
of equilibrium with the environment, and accounting for transient responses under nonstationary
statistics will require an extension to our theory. Overall, this work points a way towards expanding
theories of predictive coding and efficient coding to unify inference, learning, and control in biological
systems.
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A Appendix

A.1 Shoehorning the inference tracking dynamics as an LQG control problem

Substituting Eqs 1- 2, and 4-5 in Eq 6.

∆̃t =∆t + ηtf

=(D p̃t + E ot) + ηtf

=D p̃t + E (C xt + ηto) + ηtf

=D p̃t + E C xt + E ηto + ηtf

=D p̃t + E C (A xt−1 + ηtp) + E ηto + ηtf

=D p̃t + E C A xt−1 + E C ηtp + E ηto + ηtf

=D (pt + ηtb) + E C A xt−1 + E C ηtp + E ηto + ηtf

=E C A xt−1 +D pt + E C ηtp + E ηto +D ηtb + ηtf (15)

Combining Eqs 1 and 15, we write the dynamics of augmented state zt =
[
xt ∆̃t

]>
as in Eq 16.

The noisy residual can now be written as a partial observation of the augmented state (Eq 17).

zt =

[
xt

∆̃t

]
=

Aaug︷ ︸︸ ︷[
A 0

E C A 0

] zt−1︷ ︸︸ ︷[
xt−1

∆̃t−1

]
+

Baug︷︸︸︷[
0
D

]
pt +

ηt−1
aug︷ ︸︸ ︷[

I 0 0 0
E C E D I

]η
t
p

ηto
ηtb
ηtf

 (16)

∆̃t = [0 I]︸ ︷︷ ︸
Caug

[
xt

∆̃t

]
︸ ︷︷ ︸
zt

(17)

Rewriting Eqs 16-17 using concise notation, we get the LQG dynamics equations where prediction p
is treated as the control.

zt =Aaug z
t−1 +Baug p

t + ηt−1
aug

∆̃t =Caug z
t

A.2 Feedforward and feedback energy costs expressed as the LQG state and control costs
respectively

We express the feedforward and feedback energy costs as the LQG state and control costs respectively.

For the derivation, we introduce the matrices Q =

[
0 0
0 Wf

]
, and R = Wb. We take the feedback

noise ηb as i.i.d ∼ N (0, Σb) .

min
p

lim
T→∞

1

T

T∑
t=1

(
∆̃t>Wf ∆̃t + p̃t

>
Wb p̃

t
)

= min
p

lim
T→∞

1

T

T∑
t=1

(
∆̃t>Wf ∆̃t + (pt + ηtb)

>
Wb (pt + ηtb)

)
= min

p
lim
T→∞

1

T

T∑
t=1

(
∆̃t>Wf ∆̃t + pt

>
Wb p

t + ηtb
>
Wb η

t
b

)
= min

p
lim
T→∞

1

T

T∑
t=1

(
∆̃t>Wf ∆̃t + pt

>
Wb p

t
)

+ Tr(Wb Σb)

= min
p

lim
T→∞

1

T

T∑
t=1

(
zt
>
Q zt + pt

>
R pt

)
+ Tr(Wb Σb)

= min
p

lim
T→∞

1

T

T∑
t=1

zt>Q zt︸ ︷︷ ︸
state cost

+ pt
>
R pt︸ ︷︷ ︸

control cost


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A.3 Minimizing the total energy cost also minimizes the inference cost, for a fixed D& E

The LQG problem of interest is described by Eqs 10–12. The separation principle states that the
solution for LQG problem includes an estimation part and a control part, both of which jointly form
the optimal solution even if treated separately. The estimation part of LQG solution minimizes the
average squared norm error between estimated state ẑ and the true state z, as shown in the left side of
equality in Eq 18. Note that at any time t, we get to observe all the evidence up until that time (i.e
∆̃1, ∆̃2,.., ∆̃t). This enables the simplification from Eq 18 to 19, because the optimal estimate ˆ̃∆t

given ∆̃t is trivially ∆̃t itself. Hence, from Eq 20, we conclude that although we define the LQG
objective function to be just the total energy cost, the LQG solution that minimizes the total energy
cost also minimizes the inference cost for a fixed D and E.

lim
T→∞

1

T

T∑
t=1

(zt − ẑt)> (zt − ẑt) = lim
T→∞

1

T

T∑
t=1

(

[
xt

∆̃t

]
−
[
x̂t

ˆ̃∆t

]
)> (

[
xt

∆̃t

]
−
[
x̂t

ˆ̃∆t

]
) (18)

= lim
T→∞

1

T

T∑
t=1

(xt − x̂t)> (xt − x̂t) (19)

=Costinf (20)

A.4 LQG estimation solution to find F , G, and H in terms of D and E

The optimal estimate of the augmented state based on its noisy partial observations is given as

ẑt =(I −K Caug)Aaug ẑ
t−1 +K ∆̃t + (I −K Caug)Baug p

t (21)

K =Σ̌ CTaug(Caug Σ̌ C>aug)−1,

where Σ̌ is the solution to a discrete algebraic Riccati equation (Eq 22), with W as the covariance of
noise vector ηaug.

Σ̌ = Aaug Σ̌ A>aug +W −Aaug Σ̌ C>aug(Caug Σ̌ C>aug)−1Caug Σ̌ A>aug (22)

For brevity, we rewrite Eq 21 in terms of block matrics using the following substitutions,

Faug =(I −K Caug)Aaug, Haug = (I −K Caug)Baug[
x̂t

∆̃t

]
=

[
(Faug)11 (Faug)12

(Faug)21 (Faug)22

] [
x̂t−1

∆̃t−1

]
+

[
(K)1

(K)2

]
∆̃t +

[
(Haug)1

(Haug)2

]
pt (23)

yielding

x̂t =(Faug)11 x̂
t−1 + (Faug)12 ∆̃t−1 + (K)1 ∆̃t + (Haug)1 p

t (24)

∆̃t =(Faug)21 x̂
t−1 + (Faug)22 ∆̃t−1 + (K)2 ∆̃t + (Haug)2 p

t.

Since the states are Markovian, consequently the optimal estimates are Markovian as well. This
implies that x̂t given x̂t−1, does not depend on ∆̃t−1. Likewise, ∆̃t given ∆̃t, does not depend on
x̂t−1, ∆̃t−1, and pt. The above two arguments can be used to deduce that

(Faug)12 = 0, (Faug)21 = 0, (Faug)22 = 0 (K)2 = I, (Haug)2 = 0.

which we also verified empirically for the one dimensional case. Substituting (Faug)12 = 0 in Eq 24
and comparing it with Eq 7, we get the optimal solutions for F , G, and H in terms of D and E,
denoted as F ′, G′, and H ′ respectively.

F ′ = (Faug)11, G
′ = (K)1, H

′ = (Haug)1

A.5 LQG control solution to find L in terms of D and E

The optimal LQG control is given as

pt =Laug ẑ
t−1 (25)

Laug =− (R+B>aug P Baug)−1B>aug P Aaug (26)
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where P is the solution of a discrete algebraic Riccati equation (Eq 27).

P = Q+A>aug P Aaug −A>aug P Baug(R+B>aug P Baug)−1 B>aug P Aaug (27)
As shown in Eq 16, the last set of columns in Aaug are all zero vectors. As a consequence, since
Aaug is the last multiplier in the right side of equality in Eq 25, the last set of columns of Laug would
also be zero vectors. More specifically, Eq 25 can be further simplified by writing Laug in terms of
block matrices in the following way

pt = [(Laug)1 (Laug)2]

[
x̂t−1

∆̃t−1

]
=(Laug)1 x̂

t−1 + (Laug)2 ∆̃t−1, then (Laug)2 = 0

=⇒ pt =(Laug)1 x̂
t−1

Hence, the optimal prediction is linearly related to the estimate through (Laug)1. For consistency in
notations, we denote (Laug)1 as L′, yielding

pt = L′ x̂t−1, where L′ = (Laug)1.

A.6 Closed form expressions for total cost in terms of D and E

The optimal inference cost for fixed D and E, which is the same as the augmented state’s estimation
error, is Cost′inf = Tr(Σ). Where Σ is the augmented state’s estimation error covariance matrix,
such that

Σ = Σ̌− Σ̌ C>aug(Caug Σ̌ C>aug)−1 Caug Σ̌. (28)
The optimal total energy cost for a given D and E, which is the optimal LQG cost, is given as
Cost′energy = Tr(Q Σ) + Tr(P (Σ̌ − Σ)). As Σ is the error covariance matrix in estimating zt,
and since the noisy residual ∆̃t is fully observable at any time point, the corresponding lower block
matrix in Σ will be zero. Also, by definition in Eq 12, we know that the upper block matrix in Q is
zero. As a consequence, Tr(Q Σ) would always be zero. Resulting in Cost′energy = Tr(P (Σ̌−Σ)).
Combining the inference cost and energy cost, we have the total cost in terms of D and E as

Cost′tot = Tr(Σ) + Tr(P (Σ̌− Σ)) (29)

A.7 Condition for useful feedback

It can be algebraically shown that the total cost is an even function in both D and E and hence can
be written as a function of Ď = D2 and Ě = E2. This limits the function domain to non-negative
values, thereby reducing the search space for numerical optimization. We empirically observe that
the cost function now has just one minimum when plotted with Ď and Ě, and that the negative of
gradient at any point always directs toward this minimum.

Let Ě′ denote the optimal Ě that minimizes the total cost at Ď = 0. Ě′ can be computed by equating
the derivative of cost with respect to Ě to 0, at Ď = 0 (Eq 30).

∂Cost′tot

∂Ě

∣∣∣∣
Ď=0,Ě=Ě′

= 0 (30)

We define ψ as the derivative of total cost with respect to Ď, evaluated at Ď = 0 and Ě = Ě′ (Eq 31).

ψ =
∂Cost′tot

∂Ď

∣∣∣∣
Ď=0,Ě=Ě′

(31)

Since the negative of gradient always points to the minimum, the following holds true. If ψ is
negative, then the negative of gradient points towards non-zero Ď, implying the optimal Ď is non-
zero. However, given that the domain of Ď is non-negative, if ψ is non-negative then the optimal Ď
is 0. Therefore, the optimal Ď is non-zero if and only if ψ < 0. These conditions can be concisely
written as

Ubn < Φ(Ufn, A, σ
2
p,
C2

σ2
o

). (32)

where Φ is a complicated function involving the roots Ě′ of the quartic equation Eq 30 substituted
into Eq 31. Ultimately we use these analytic expressions to solve numerically for the remaining
conditions on the optimal prediction-multiplier D and observation-multiplier E.
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