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Abstract

Sampling and Variational Inference (VI)
are two large families of methods for ap-
proximate inference with complementary
strengths. Sampling methods excel at ap-
proximating arbitrary probability distribu-
tions, but can be inefficient. VI methods are
efficient, but can fail when probability dis-
tributions are complex. Here, we develop a
framework for constructing intermediate al-
gorithms that balance the strengths of both
sampling and VI. Both approximate a prob-
ability distribution using a mixture of simple
component distributions: in sampling, each
component is a delta-function and is chosen
stochastically, while in standard VI a single
component is chosen to minimize divergence.
We show that sampling and VI emerge as spe-
cial cases of an optimization problem over
a mixing distribution, and intermediate ap-
proximations arise by varying a single pa-
rameter. We then derive closed-form sam-
pling dynamics over variational parameters
that stochastically build a mixture. Finally,
we discuss how to select the optimal compro-
mise between sampling and VI given a com-
putational budget. This work is a first step
towards a highly flexible yet simple family of
inference methods that combines the comple-
mentary strengths of sampling and VI.

1 INTRODUCTION

We are concerned with the familiar and general case
of approximating a probability distribution, such as
occurs in Bayesian inference when both the prior over

latent variables and the likelihood function connect-
ing them to data are known, but computing the pos-
terior exactly is intractable. There are two largely
separate families of techniques for approximating such
intractable inference problems: Markov Chain Monte
Carlo (MCMC) sampling, and Variational Inference
(VI) (Bishop, 2006; Murphy, 2012).

Sampling-based methods, including MCMC, approxi-
mate a distribution with a finite set of representative
points. MCMC methods are stochastic and sequen-
tial, generating a sequence of sample points that, given
enough time, become representative of the underlying
distribution increasingly well. That is, MCMC sam-
pling is (typically) asymptotically unbiased and rela-
tively cheap to compute per sample, at the expense of
high variance, leading to potentially long run times in
practice. Similar to the approach we take here, sam-
pling methods are studied at different scales: both in
terms of their asymptotic limit (i.e. their bias at in-
finitely many samples) and their practical behavior for
finite samples or other resource limits (i.e. their vari-
ance) (Korattikara et al., 2014; Angelino et al., 2016).

Variational Inference (VI) refers to methods that pro-
duce an approximate distribution by minimizing some
quantification of divergence between the approxima-
tion and the desired posterior distribution (Zhang
et al., 2019). For the purposes of this paper, we
will use VI to refer to the most common flavor of
variational methods, namely minimizing the Kullback-
Leibler (KL) divergence between an approximate dis-
tribution from a fixed family and the desired distri-
bution (Bishop, 2006; Wainwright and Jordan, 2008;
Murphy, 2012). Whereas sampling methods can be
thought of as taking place “in the space of random
variables,” VI takes place “in the space of parame-
ters.” For instance, samples of a real-valued scalar
are themselves real-valued scalars, but the variational
problem of finding the best-fitting Gaussian is an opti-
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Figure 1: Conceptual introduction on a toy 2D example. a) Sampling methods approximate the underlying
p(x) with a stochastic set of representative points. b) Variational Inference (VI) methods begin by selecting
an approximating distribution family, q(x; θ), here an isotropic Gaussian plotted as an ellipse at its 1σ contour.
The optimal parameters θ∗ are chosen to minimize KL(q(x; θ)||p(x)). c) We propose using a stochastic mixture
of component distributions, where parameters θ are sampled rather than the variable of interest x.

mization problem in the two-dimensional space of the
Gaussian’s parameters (e.g. mean and variance). The
best-fitting approximate distribution is often used di-
rectly as a proxy for the true posterior in subsequent
calculations, which can greatly simplify those down-
stream calculations if the approximate distribution is
itself easy to integrate. In contrast to MCMC, VI is of-
ten used in cases where speed is more important than
asymptotic bias (Angelino et al., 2016; Zhang et al.,
2019).

In this work, our goal is to develop an intermediate
family of methods that “interpolate” MCMC and VI,
inspired by a simple and intuitive picture (Figure 1):
we propose constructing a stochastic process in the
space of variational parameters such that the resulting
approximation is a stochastic mixture of variational
“component” distributions. This extends sampling by
replacing the sampled points with extended compo-
nents, analogous to kernel density estimation but in
the space of inferred rather than observed variables.
It extends VI by replacing the single best-fitting vari-
ational distribution with a stochastic mixture of more
localized components. This is qualitatively distinct
from previous variational methods that use stochas-
tic optimization: rather than stochastically optimiz-
ing a single variational approximation (Hoffman et al.,
2013; Salimans et al., 2015), we use stochasticity to
construct a random mixture of variational components
that achieves lower asymptotic bias than any one com-
ponent could. We will further show below how classic
sampling and classic variational inference emerge as
special cases of a single optimization problem.

This paper is organized as follows. In section 2, we set
up the problem and our notation, and describe how
both classic sampling and classic VI can be under-

stood as mixtures. In section 3, we introduce an in-
tuitive framework for reasoning about infinite stochas-
tic mixture distributions, define an optimization prob-
lem over these mixtures, and state our main theoret-
ical results in two theorems. Section 4 introduces a
tractable approximation to this optimization problem
from which simple closed-form sampling dynamics are
derived. Section 5 discusses resource-limitations and
suggests a method to find the optimal compromise be-
tween sampling and VI. Section 6 concludes with a
summary, related work, limitations, and proposed fu-
ture directions.

2 SETUP AND NOTATION

Let p∗(x) = Zp(x) denote the unnormalized proba-
bility distribution of interest, with unknown normal-
izing constant Z. For instance, in the common case
of a probabilistic model with latent variables x, ob-
served data D, and joint distribution p(x,D), we are
interested in approximations to the posterior distribu-
tion p(x|D). This is intractable in general, but we
assume that we have access to the un-normalized pos-
terior p∗(x|D) = 1

Zp(D|x)p(x).1 Let q(x; θ) be any
“simple” distribution that may be used used in a clas-
sic VI context (such as mean-field or Gaussian), and
let mT (x) be a mixture containing T of these simple
distributions as components, defined by a set of T vari-
ational (component) parameters {θ(1), . . . , θ(T )}:

mT (x) ≡ 1

T

T∑
t=1

q(x; θ(t)) . (1)

1To reduce clutter, D will be dropped in the remainder
of the paper, and we will use only p(x) and p∗(x).
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For example, if q is a multivariate normal with mean µ
and covariance Σ, then θ(t) = {µ(t),Σ(t)} and mT (x)
would be a mixture of T component normal distribu-
tions (Gershman et al., 2012).

We will study properties of distributions over compo-
nent parameters, which we denote ψ(θ). If the set
of θ(t) is drawn randomly from ψ(θ), then as T →∞,
mT (x) approaches the idealized infinite mixture, which
we write as

m(x) ≡
∫
θ

q(x; θ)ψ(θ)dθ . (2)

Sampling and VI as special cases of the mixing
distribution. Let θ∗ = arg minθ KL(q(x; θ)||p(x))
be the parameters corresponding to the classic single-
component variational solution. VI corresponds to the
special case where the mixing distribution ψ(θ) is a
Dirac delta around θ∗, or ψ(θ) = δ(θ − θ∗), in which
case the mixture mT (x) is equivalent to q(x; θ∗) re-
gardless of the number of components T . Sampling
can also be seen as a special case of ψ(θ) in which each
component narrows to a Dirac delta (the marginal dis-
tribution of component variances concentrates around
zero), and the means of the components are distributed
according to p(x). This requires that the component
family q(x; θ) is capable of expressing a Dirac-delta at
any point x. Thus, both sampling and VI can be seen
as limiting cases of stochastic mixture distributions,
mT (x), defined by a distribution over component pa-
rameters, ψ(θ). In what follows, we will show how
designing the mixing distribution ψ(θ) – or indirectly
constructing it by a stochastic process over θ – allows
us to create mixtures that trade-off the complemen-
tary strengths of sampling and VI. Note that we will
analytically study m(x), but in practice T will be finite
(discussed further in section 5).

3 OPTIMIZATION FRAMEWORK
OVER MIXING DISTRIBUTIONS

3.1 Decomposing KL(m||p) Into Mutual
Information and Expected KL

The idealized infinite mixture m(x) is fully defined by
the chosen component family q(x; θ) and the mixing
distribution ψ(θ). To construct the mixing distribu-
tion, we start by considering the variational objective
with respect to the entire mixture, KL(m||p):

KL(m||p) =

∫
x

m(x) log
m(x)

p∗(x)
dx + log Z , (3)

where Z is the normalizing constant of p∗(x) and is
irrelevant for constructing m(x). Directly minimizing
(3) for mixtures is intractable in general. However, as

first shown by Jaakkola and Jordan (1998) for finite
mixtures, it admits the following useful decomposition:

KL(m||p) =

∫
θ

ψ(θ)

∫
x

q(x; θ) log
q(x; θ)

p∗(x)
dxdθ︸ ︷︷ ︸

(i) Expected KL

−
∫
θ

ψ(θ)

∫
x

q(x; θ) log
q(x; θ)

m(x)
dxdθ︸ ︷︷ ︸

(ii) Mutual Information I[x;θ]

(4)

(dropping log Z). The first term, (i), is the Expected
KL Divergence for each component when the pa-
rameters are drawn from ψ(θ). This term quantifies,
on average, how well the mixture components match
the target distribution. In isolation, the Expected KL
is minimized when all components individually min-
imize KL(q||p), i.e. when ψ(θ) → δ(θ − θ∗). This
tendency to concentrate ψ(θ) to the single best vari-
ational solution is balanced by the second term, (ii),
which is the Mutual Information between x and
θ, which we will write I[x; θ], under the joint distri-
bution q(x; θ)ψ(θ). This term should be maximized,
and, importantly, it does not depend on p∗(x). Mu-
tual Information is maximized when the components
are as distinct as possible, as in when the components
shrink towards Dirac-delta distributions. Maximizing
Mutual Information encourages the components to be-
come narrow and to spread out over diverse regions of
x regardless of how well they agree with p(x). This
decomposition of KL(m||p) into Mutual Information
(between x and θ) and Expected KL (between q and
p) is convenient because approximations to Mutual In-
formation are well-studied, and minimizing Expected
KL can leverage standard tools from VI.

3.2 Optimizing an Imbalanced Objective
That Over-Weights Expected KL

Figure 2 depicts a two-dimensional space with Ex-
pected KL on the x-axis and Mutual Information on
the y-axis. Any given mixing distribution ψ can be
placed as a point in this space, but in general many
ψ’s may map to the same point. We propose to view
the two terms in (4) as separate objectives that may
be differently weighted, i.e. maximizing the objective

L(ψ, λ) = I[x; θ]− λEψ [KL(q||p)] (5)

for a given hyperparameter λ with respect to the mix-
ing distribution ψ. This objective may alternatively
be viewed as a constrained optimization problem over
the mixing density ψ, where Mutual Information is
maximized subject to a constraint on Expected KL.
This is a concave maximization problem with linear
constraints, which implies that there is a unique opti-
mal ψ for each λ, defining a Pareto front of solutions
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Figure 2: Left : Decomposition of KL(m||p) into Mutual Information and Expected KL. a) Equation (4) implies
that the asymptotic quality of any mixture (in terms of KL(m||p)) is given by its distance from the y=x line
(black diagonal line). b) Two unreachable regions are shaded in gray. The first is the region above the y=x
line, unreachable because KL(m||p) ≥ 0. The second is the region to the left of the single-component variational
solution, since VI achieves the minimum KL for any one component q. c) When m(x) = q(x; θ∗) as in classic
VI, Expected KL is at its minimum and Mutual Information is zero. In our framework, this is achieved in the
λ → ∞ limit. Increasing the expressivity of q corresponds to moving left along the x-axis (blue arrow). d)
Because sampling is asymptotically unbiased, it is a mixture that lives on the KL(m||p) = 0 or y = x line. If
x is discrete, the coordinates of the point marked (d) are (H[x],H[x]), i.e. the entropy of p(x). When x is
continuous, both Mutual Information and Expected KL grow unboundedly together as the individual mixture
components approach Dirac deltas. In our framework, the m(x) mixture behaves like classic sampling as λ→ 1+

e) Any point on the y=x line implies m(x) = p(x), and this may be possible to achieve without resorting
to Dirac-delta mixture components (sampling) for certain combinations of p and q. However, points such as
(e) are not guaranteed to exist for all problems, and are difficult to find due to the intractability of Mutual
Information. f) By maximizing (an approximate version of) equation (5) with respect to ψ(θ) for different
values of λ, a curve is traced out that connects VI to sampling in a natural and principled way. This curve
depends on the specific form of the components q(x; θ). Middle: Examples in a 1D toy problem, where p(x) is
an unequal mixture of two heavy-tailed distributions (black lines), and q(x; θ) is a single Gaussian component
with parameters θ = {µ, log σ} (transluscent red components). Right : Varying λ controls the mixing distribution
over θ (contours). Red sampled points on the right correspond to the components on the left.

that each achieve a different balance between Expected
KL and Mutual Information (Figure 2f). Remarkably,
this optimization problem leads naturally to a family
of infinite stochastic mixtures with sampling and VI as
special cases, as formalized by the following theorem:

Theorem 1 Maximizing (5) with respect to ψ with
λ → 1+ results in sampling-like mixtures where
m(x) = p(x) and individual mixture components
shrink to Dirac-deltas. When λ → ∞, the mixture
behaves like classic VI, with ψ(θ) → δ(θ − θ∗), and
m(x) = q(x; θ∗). Proof: see Appendix A.1.

Note that a condition for sampling-like behavior at
λ → 1+ is that the component family q must be uni-
modal and capable of expressing Dirac-deltas, such as
if q is a location-scale family. A condition for VI-like
behavior is that θ∗ is unique. Importantly, these are
conditions only on the interpretation of (5) as general-
izing sampling and VI; there are no such restrictions on
using our framework with other component families.
Other component families, such as multi-modal q, may
in fact perform better in terms of the bias/variance
trade-off discussed in the next section.

Theorem 1 establishes a framework for constructing
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mixtures that behave like VI at one extreme (Figure
2c) and like sampling at the other (Figure 2d), by
varying a single hyperparameter, λ ∈ [1,∞). A sim-
ple demonstration is shown in the right half of Figure
2, where a bimodal and heavy-tailed p(x) is approx-
imated by a mixture of Gaussians. Notice that the
hypothetical infinite mixture, m(x) (blue line, mid-
dle column) is unbiased for λ = 1 and approaches
the single-component VI solution as λ grows. This
demonstration was created using the method outlined
in Section 4 (numerical details in Appendix B.3).

3.3 Navigating Bias/Variance Trade-Offs

While Theorem 1 characterizes solutions to the opti-
mization problem in (5) at extremal values of λ, we
now address intermediate values of λ and how they
“interpolate” sampling and VI in terms of bias and
variance. In general, bias and variance of approxi-
mate inference depend on the particular downstream
application. A common problem is to approximate
the expected value of some function f of interest,
Ep[f(x)], by substituting the approximate distribution
EmT

[f(x)]. In Figure 3, we compute the bias and vari-
ance on a randomly chosen degree-4 polynomial for
each of three toy distributions with T = 10 (further de-
tails in Appendix B.4). Despite the arbitrarily-chosen
f , a clear trend emerges where intermediate values of
λ smoothly interpolate between sampling and VI in
terms of both bias and variance.

To formalize this bias/variance trade-off in terms that
are independent of f , we decompose the expected error
of a T−component mixture into two terms:

Total Error = E[KL(mT (x)||p(x))] =

KL(m(x)||p(x))︸ ︷︷ ︸
bias

+E [KL(mT (x)||m(x))]︸ ︷︷ ︸
variance

. (6)

Further, the variance term is related to Mutual Infor-
mation between x and θ:

variance ≈ 1

T
I[x; θ] (7)

(see Appendix A.2). This is analogous to the variance
of a Monte Carlo estimator of E[f ] using T indepen-
dent samples, which is 1

T var(f). Intuitively, I[x; θ]
quantifies variance because it can be interpreted as
the logarithm of the number of distinguishable compo-
nents in the mixture, and a greater number of compo-
nents implies that the variance of EmT

[f(x)] may be
larger. Thus, the following theorem establishes mono-
tonic changes in bias and variance with λ in terms that
are effectively independent of f :

Theorem 2 Maximizing (5) with respect to ψ gives
rise to a family of mixtures, parameterized by λ ∈

[1,∞). As λ increases, KL(m||p) (bias) increases and
I[x; θ] (approximate variance) decreases continuously
and monotonically. Proof: see Appendix A.3.

4 MCMC SAMPLING OF
COMPONENT PARAMETERS

4.1 A Tractable Mutual Information
Approximation

Maximizing Mutual Information, as is required by (5),
is a notoriously difficult problem that arises in many
domains, and there is a large collection of approxima-
tions and bounds in the literature (Jaakkola and Jor-
dan, 1998; Brunel and Nadal, 1998; Gershman et al.,
2012; Wei and Stocker, 2016; Kolchinsky and Tracey,
2017; Poole et al., 2019). Here, we seek an approxi-
mation to Mutual Information that does not require
knowing m(x), that requires only local information
about ψ(θ), and that can be evaluated separately for
each θ. These properties will allow us to use MCMC
methods to serially sample θ values from ψ(θ).

To derive such an approximation, note that Mutual
Information between x and θ can be written as

I[x; θ] = H[θ]− Eψ(θ)
[
Eq(x|θ)[H[θ̂|x]]︸ ︷︷ ︸

H[θ̂|θ]

]
(8)

where H[θ] is the entropy of ψ(θ) and H[θ̂|x] is the

entropy of q(θ̂|x) = q(x;θ̂)ψ(θ̂)
m(x) , i.e. the distribution

of inferred θ values for a given x. This second term,
H[θ̂|θ], can be thought of in terms of a statistical es-

timation problem, where each θ generates an x, and θ̂
is the “recovered” value of θ. Bounding the error of θ̂
is a well-studied problem in statistics.

A lower-bound on Mutual Information can be derived
from an upper bound on H[θ̂|θ] for each θ – in other
words, by upper-bounding the entropy of an estimator
of the parameter θ. For this, we draw inspiration from
Stam’s inequality (Stam, 1959; Dembo et al., 1991;
Wei and Stocker, 2016), which states

H[θ̂|θ] ≤ 1

2
log
∣∣2πeF(θ)−1

∣∣ , (9)

where | · | is a determinant, and F(θ) is the Fisher
Information Matrix, defined as

F(θ)ij = −Eq(x;θ)

[
∂2

∂θi∂θj
log q(x; θ)

]
.

The Fisher Information Matrix is also the local metric
on the statistical manifold with coordinates θ (Amari,
2016), it quantifies how “distinguishable” θ is from
θ + dθ. Note that (9) can be viewed as the entropy
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Figure 3: The parameter λ controls a bias/variance tradeoff. For two target distributions (left column), we
sampled isotropic Gaussian distributions with an HMC chain at various values of λ (see Appendix B for sampling
details). We then calculated the mean and variance of the expected value of a random 4th-order polynomial
when using T = 10 samples (right column). Low λ provides unbiased but high variance estimators, while high
λ provides a bias near that of standard VI and a vanishing variance.

of a Gaussian approximation to q(θ̂|x) with precision
matrix F(θ); this Gaussian approximation is most ac-
curate when q(x; θ) itself is narrow and approximately
Gaussian (Wei and Stocker, 2016).

Combining (8) and (9), we propose to use

IF [x; θ] ≡ H[θ]− 1

2
Eψ(θ)

[
log
∣∣2πeF(θ)−1

∣∣] (10)

as a proxy for the intractable I[x; θ] in the optimiza-
tion problem in (5).

Note that IF [x; θ] is not strictly a bound on I[x; θ],
but may be seen as an approximation to it (Wei and
Stocker, 2016). Briefly, this is because the original
Stam’s inequality, as stated in (9), assumes θ is a scalar
location parameter, and assumes the high-precision
limit where q(θ̂|x) is well-approximated by a Gaus-
sian. Despite this, IF [x; θ] is well-suited for our pur-
poses, since (i) it leads to remarkably simple expres-
sions for ψ(θ) below; (ii) it is concave in ψ; (iii) it is
exact in the “sampling” limit using narrow Gaussian-
like components (where F(θ) is the precision matrix

of q(θ̂|x)); (iv) in the large-λ limit Expected KL still
dominates IF [x; θ], and (v) finally, the inequality in
(9) is likely strict in cases where the entropy of ψ(θ)
itself is small (i.e. large λ), since it neglects this addi-
tional prior information contained in ψ(θ) when esti-

mating θ̂ and therefore over-estimates the entropy of

q(θ̂|x).2 Importantly, points (ii)–(iv) in this list are
enough to ensure that Theorems 1 and 2 still hold, i.e.
that substituting IF [x; θ] for I[x; θ] in our original op-
timization problem (5) results in families of mixture-
approximations that effectively interpolate sampling
and VI. However, (10) is most applicable when using
Gaussian or Gaussian-like components, and that the
monotonicity arguments in Theorem 2 now hold with
respect to IF [x; θ] rather than I[x; θ].

4.2 Sampling Mixture Components

Combining (5) and (10) and applying the calculus of
variations to optimize with respect to the mixing dis-
tribution ψ gives

logψ(θ) =
1

2
log |F(θ)| − λKL(q(x; θ)||p∗(x)) + C ,

(11)
where C is constant with respect to θ (but depends on
λ). Equation (11) is strikingly simple, and amenable to
many existing MCMC sampling methods for drawing
samples of θ from ψ. In particular, there are highly
efficient samplers such as Hamiltonian Monte Carlo
(HMC) (Neal, 2010) and variants such as the No-U-
Turn Sampler (Hoffman and Gelman, 2014) which re-

2By analogy to the Bayesian Cramér-Rao bound (Gill
and Levit, 1995; Fauß et al., 2021), a tighter variant of (9)
might be applied here, though possibly at the expense of
added complexity; we leave this to future work.
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quire only gradients of the unnormalized log density,

∇θ logψ(θ) =
1

2
∇θ log |F(θ)| − λ∇θKL(q||p) . (12)

Both of these terms are readily computed:
∇θ log |F(θ)| is known in closed-form for certain
families of q such as commonly-used Multivari-
ate Gaussians or can be estimated numerically.
∇θKL(q||p) (or ∇θKL(q||p∗)) is simply the gradient
of the objective from classic VI for which numerous
estimators exist (Hoffman et al., 2013; Kucukelbir
et al., 2017) and that are implemented in a variety
of statistics toolboxes such as Stan (Carpenter et al.,
2017) or PyMC (Salvatier et al., 2016). Some common
estimators of ∇θKL(q||p) are stochastic, e.g. by using
batches of data (Hoffman et al., 2013), in which
case sampling parameters θ ∼ ψ(θ) can be done
using stochastic gradient methods from the MCMC
sampling literature (Ma et al., 2015).

Simulations throughout this paper were done using
(11)–(12), using HMC for sampling (Neal, 2010), im-
plemented in PyTorch, NumPy, and SciPy (Paszke
et al., 2019; Harris et al., 2020; Virtanen et al., 2020)
and plotted using Matplotlib (Hunter, 2007) (details in
Appendix B). All code is available publicly online; the
repository URL will be shared after the double-blind
review process is complete.

5 Resource-Limitations (Finite T )

5.1 Optimal Compromise Between Sampling
and VI

Large λ (VI-like) wastes redundant computation when
T is large, and small λ (sampling-like) requires large
T to overcome its variance. In other words, an appro-
priate compromise between sampling and VI depends
on the computational budget, T , of how many compo-
nents can be evaluated. These trade-offs for different
values of T are shown empirically on toy problems in
Figure 4.

One way to select the optimal λ given a budget of T
mixture components is to choose the λ that minimizes
the total expected error, i.e. the sum of bias and vari-
ance in equation (6). By combining (4) with (7), this
is

Total Error ≈ E[KL(q||p)] + I[x; θ]

(
1

T
− 1

)
.

Along the Pareto front (Figure 2f), λ defines the slope,
or

λ =
dI[x; θ]/dλ

dE[KL(q||p)]/dλ
.

Figure 4: Minimizing Mean Squared Error for on a
random polynomial selects λ ≈ 1.5 for T = 10 samples
(top left) and λ ≈ 1.1 for T = 100 (top right). Bottom:
The optimal λ closely follows the derived estimate in
equation (13). Numerical results correspond to the
first row of Figure 3 (see Appendix B.5).

Setting the derivative of Total Error to zero with re-
spect to λ, we find that the optimal value is simply

λ∗ =
T

T − 1
. (13)

Thus, when the computational budget is small (ap-
proaching T = 1 component), the optimal trade-off is
to select λ → ∞, i.e. VI-like behavior. Conversely,
for large T , the optimal trade-off selects λ → 1+, i.e.
sampling-like behavior. More generally, equation (13)
is an easy recipe for navigating the trade-offs between
sampling and VI given a fixed computational budget.

5.2 Time and Space Complexity

There are rapidly diminishing returns to increasing
T , since Mutual Information is upper-bounded by
I[x; θ] ≤ log T , with equality only when all compo-
nents are mutually non-overlapping (Jaakkola and Jor-
dan, 1998). In past work using mixture approxima-
tions, these diminishing returns were compounded by
O(T 2) time and O(T ) space complexity, since solv-
ing the joint optimization problem over T components
means selecting the parameters of each component de-
pending on the other T − 1 components, all of which
must be in memory at once (Jaakkola and Jordan,
1998; Gershman et al., 2012; Salimans et al., 2015;
Miller et al., 2017; Acerbi, 2018) (but the O(T 2) com-
plexity may be hardware-accelerated). We circumvent
this by bounding Mutual Information using only local
geometric information in (10), allowing each compo-
nent to be selected independently of the others. This
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means we can select and evaluate T components in
O(T ) time and either O(T ) space (if all are stored) or
O(1) space (if components are evaluated and accumu-
lated online). Further, drawing samples of θ ∼ ψ(θ)
is embarrassingly parallelizable into multiple sampling
chains for a constant factor speedup.

6 DISCUSSION

Summary: Our work proposes a broad new family
of approximate inference methods in which sampling
methods are used in the space of variational param-
eters, resulting in stochastic mixture. Our main the-
oretical contribution is the framework shown in Fig-
ure 2, where an optimization problem that balances
two objectives (Mutual Information and Expected KL)
gives rise to a family of approximations that general-
ize and interpolate sampling and VI. We further de-
rived an easy-to-use method to generate such mixtures
using a convenient approximation to Mutual Informa-
tion, which we then demonstrated and evaluated on
toy problems.

Related Work: The trade-offs between sampling
and VI are well-studied, and many methods have been
proposed to “close the gap” between them (see (An-
gelino et al., 2016; Zhang et al., 2019) for general re-
views). Like these other methods, we aim to pro-
vide good approximations with high computational ef-
ficiency and low variance.

There are many methods that use mixture models to
reduce the bias of variational inference. In past work,
mixtures are often directly optimized, reducing bias
and maintaining low variance but at a O(T 2) compu-
tational cost using a mixture of T components (Section
5.2 above). Simplifications include using greedy opti-
mization (Miller et al., 2017) or more efficient bounds
on the Mutual Information term (Gershman et al.,
2012). Our method reduces the cost per component
at the expense of increased variance, since compo-
nents may be independently sampled. Further, with
some notable exceptions (Anaya-Izquierdo and Mar-
riott, 2007; Salimans et al., 2015), most mixture VI
methods make strong assumptions about the family of
components (Jaakkola and Jordan, 1998; Gershman
et al., 2012; Acerbi, 2018; Miller et al., 2017). While
our general framework is agnostic to the family of q,
our approximation in Section 4 is most applicable to
Gaussian components.

Many methods use sampling in the service of varia-
tional inference, or vice versa, but do not provide a
unifying approach to both. These typically use the
samples to compute expectations used to update a
variational approximation (Acerbi, 2018; Miller et al.,

2017; Kucukelbir et al., 2017), rather than to generate
the mixture components themselves.

There are a large number of sampling approaches that
aim to improve the efficiency of samples and reduce the
variance of MCMC. Some of these use variational ap-
proaches as proposal distributions, but ultimately the
posterior is approximated by a set of samples of the
latent variables (de Freitas et al., 2001; Korattikara
et al., 2014; Ma et al., 2015; Zhang et al., 2021). In
contrast, by allowing samples over variational distribu-
tions, our approach allows each sample to cover more
space with less variance and greater efficiency.

Despite some high-level similarities to other ap-
proaches, our framework is unusual in approximat-
ing the posterior by a sampled mixture of variational
approximations. The Mixture Kalman filter (Chen
and Liu, 2000) is a special case of this, which uses
a sampled mixture of Gaussians, each constructed as
a Kalman filter. A related approach is to optimize a
parameterized function that generates mixture com-
ponents (Salimans et al., 2015; Wolf et al., 2016), and
generative diffusion models can also be seen as a case
of this approach (Sohl-Dickstein et al., 2015; Ho et al.,
2020). Our work differs in that we derived a closed-
form mixing distribution that requires no additional
learning or optimization.

Limitations and future work: On the theoretical
side, there is a gap in generality going from I[x; θ]
to IF , since the latter is most appropriate for nar-
row and Gaussian-like components (Wei and Stocker,
2016). Incorporating prior information from ψ(θ) into
this bound, generalizing to other kinds of components,
or even starting with alternative bounds on I[x; θ] are
all interesting avenues for future work. Another limi-
tation is that in Section 5, we assumed that complexity
is only a function of T not of λ; in reality, λ changes
the shape of ψ and can make it easier or harder to
sample from efficiently.

Our biggest limitation in terms of implementation is
scale, as we have only evaluated relatively simple toy
distributions with a custom non-optimized implemen-
tation of HMC. A thorough comparison of our pro-
posed family of methods with existing inference meth-
ods on larger problems will be an important next step.
One interesting avenue to scale up our framework will
be to combine insights from stochastic-gradient VI
methods (Hoffman et al., 2013), with MCMC methods
that make use of stochastic gradients of log p (Korat-
tikara et al., 2014; Ma et al., 2015), i.e. making use of
stochastic values of ∇KL(q||p) in (12).
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A PROOFS AND DERIVATIONS

Throughout, we assume that θ forms a minimal statistical manifold (Amari, 2016), so that whenever q(x; θi) =
q(x; θj) for all x, it must be that θi = θj . Additional assumptions are introduced as-needed.

A.1 Proof of Theorem 1

Theorem 1 refers to the following optimization objective:

L(ψ, λ) = I[x; θ]− λEψ(θ) [KL(q(x; θ)||p∗(x))] , ((5) restated)

where λ ∈ [1,∞) is a hyper-parameter, and ψ is a probability density on θ. The two claims of the theorem are,

1. When λ→∞, the resulting mixture m(x) “behaves like” classic variational inference.

2. When λ→ 1, the resulting mixture m(x) “behaves like” classic sampling.

Both of these claims will be addressed both in the case of (5), and in the case of using the approximate
objective in which I[x; θ] is replaced with

IF [x; θ] ≡ H[θ]− 1

2
Eψ(θ)

[
log
∣∣2πeF(θ)−1

∣∣] . ((10) restated)

A.1.1 Claim 1: VI Behavior as λ→∞

Let θ∗ be the set of values (or single value) of θ that minimize(s) KL(q(x; θ)||p(x)). The minimal achievable
value of Eψ[KL(q||p)] for any ψ is likewise KL(q(x; θ)||p(x)), which is achieved when ψ(θ) concentrates all of its
mass on (some mixture of) θ∗. Each q(x; θ∗) is considered a solution to the “classic” VI objective.

An equivalent objective to (5) is to maximize

L̃(ψ, λ) =
1

λ
I[x; θ]− Eψ(θ) [KL(q(x; θ)||p∗(x))] ,

which helps clarify that as λ→∞, a well-defined solution still exists, given by a mixture of deltas on θ∗ values
as just described. Further, among all such mixtures-of-deltas, the one with the maximum Mutual Information
will give equal weight to each q(x; θ∗) component (if they are mutually non-overlapping). Thus, whenever there
is more than one optimal θ∗, ψ(θ) will be a mixture of components, each of which is a classic-VI solution. Such a
mixture can only make m(x) less biased than any one component is, since any ψ(θ) that is a weighted combination
of deltas on θ∗ points will have the same (minimal) Expected KL, and so increasing Mutual Information can
only reduce KL(m||p). When, instead, there is a single optimal θ∗ values, ψ(θ) will concentrate to a single delta
on that value as λ→∞.

If there are multiple optimal values of θ∗, and these values are disconnected in θ−space, then a sequential proce-
dure for sampling θ ∼ ψ(θ) is unlikely to find more than a single one of these highly-peaked ψ(θ) modes. Thus, we
can conclude that in practice, as λ→∞, m(x) will behave like classic VI with a single component; and further,
if multiple classic-VI modes are discovered, then this will perform no worse than the single-component solution
(since increasing Mutual Information for a fixed Expected-KL can only reduce the total bias or KL(m||p)).

Approximate objective: Importantly, the core of this argument – that globally minimizing Expected KL
selects the classic VI solution or a mixture of them – remains when maximizing IF [x; θ] rather than I[x; θ],
hence VI remains a special case of our approximate framework introduced in Section 4 of the main paper. �

A.1.2 Claim 2: Sampling Behavior as λ→ 1

Let us begin by defining what it means for m(x) to be equivalent to sampling from p(x). By this we mean that
(i) all but negligibly many components shrink to Dirac-deltas, and (ii) these delta-components are selected at
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each location x with probability p(x). When all components are deltas, expectations of any function, become
equivalent to evaluating the function at those points and averaging:

EmT
[f(x)] =

∫
x

(
1

T

T∑
t=1

δ(x− µ(θ(t)))

)
f(x)dx

=
1

T

T∑
t=1

f(µ(θ(t))) ,

where µ(θ) is a function that selects the mean of q(x; θ).

Optimizing (5) with λ = 1 reduces to the original problem of selecting ψ to minimize KL(m||p). As long as the
q(x; θ) component family can express Dirac-deltas at arbitrary µs, this guarantees at least one such unbiased ψ,
namely the one equivalent to sampling. However, it may be the case that there are multiple such unbiased mixing
distributions, e.g. if p(x) itself is a mixture of components from the q−family; in the two-dimensional space of
Mutual Information versus Expected KL, such a mixture would appear as a point on the y = x line (Figure 2e).
Maximizing the objective in (5) does not arbitrate among these different unbiased ψs if there is more than one.
However, the volume of θ−space is larger in regions with large Fisher Information where mixture components
are maximally distinguishable (Amari, 2016), i.e. where θ corresponds to deltas. Thus, we can conclude that if
a process selects θ uniformly from among all unbiased ψs, it is probable that q(x; θ) will be very sharp in the
sense of high Fisher Information.

This phenomenon can be seen in the λ = 1 panel on the right of Figure 2: some nonzero but negligible mass is
placed on parts of θ−space where there are wide components. However, a much greater share of the mass in ψ
is placed on narrow components. Because there is little difference at the scale of p(x) between components with
a width of 0.001 and components with a width of 0.0001, and so the marginal slices of ψ(θ) at these values are
given essentially the same mass, resulting in the pattern of vertical stripes seen in the figure. Sampling from ψ(θ)
almost always selects narrow components, since these constitute the bulk of the mass in θ−space (extending to
infinitessimally narrow components, but the figure is truncated and the distribution normalized). The fraction
of mass in ψ(θ) on non-delta components is vanishingly small, and so m(x) behaves “almost always” like classic
sampling with delta-like components.

Approximate objective: Two changes to this argument are worth noting when using the approximate objec-
tive introduced in Section 4, with IF [x; θ] instead of I[x; θ]. First, IF [x; θ] is strictly concave in ψ, which follows
from the strict concavity of H[θ], whereas I[x; θ] is only concave (but not strictly so). The strict concavity of
IF [x; θ] implies that a unique ψ will be selected for every λ. �

Second, the bound is tight, i.e.
IF [x; θ]→ I[x; θ]

when

H[θ̂|θ]→ 1

2
log
∣∣2πeF(θ)−1

∣∣
(from the definitions of (9) and (10)). Consider using the following local Laplace approximation to q(θ̂|x):

q(θ̂|x) ≈ N (θ̂; µ̂, Σ̂) , (A.1)

with

µ̂ = x and

Σ̂−1 = −∇2
θ log q(x; θ)ψ(θ)

= −∇2
θ logψ(θ)−∇2

θ log q(x; θ)

where the Hessian ∇2
θ is evaluated at the value of θ with µ(θ) = x. Combined with (8), the average entropy of

this Laplace approximation gives an estimate of the entropy of H[θ̂|θ]:

H[θ̂|θ] ≈ Eq(x;θ)

[
1

2
log
∣∣∣2πeΣ̂∣∣∣] .
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In cases where the curvature of log q dominates the curvature of logψ (i.e. ∇2
θ log q(x; θ) >> ∇2

θ logψ(θ)), Σ̂ in
the Laplace approximation becomes

Σ̂→ (−∇2
θ log q(x; θ))−1 .

Further, where log q(x; θ) has roughly constant curvature in expectation under x, or when θ are the natural
parameters of q,

∇2
θ log q(x; θ)→ −F(θ) .

Both of these conditions are met when q(x; θ) shrinks towards a Dirac-delta. Taken together, this implies that
IF [x; θ] approaches I[x; θ] in the limit where mixture components behave like samples. Thus, maximizing the
approximate objective, IF [x; θ] − λE[KL(q||p)], as λ → 1, selects the unique ψ that is both unbiased (because
the bound can be made tight) and that consists of Dirac-delta components (because this is required in order for
the bound to be tight). �

A.2 Bias/Variance Trade-Off

A.2.1 Deriving Bias and Variance

When using T mixture components, as in

mT (x) =
1

T

T∑
t=1

q(x; θ(t)) , ((1) restated)

with θ(t) ∼ ψ(θ), we would like to know the expected error to the true probability p(x), or

Total Error = E [KL(mT (x)||p(x))] (A.2)

where the outer expectation is taken over different draws of the T components. The Total Error can be decom-
posed into “bias” and “variance” terms as follows:

E[KL(mT (x)||p(x))] = KL(m(x)||p(x))︸ ︷︷ ︸
bias

+E [KL(mT (x)||m(x))]︸ ︷︷ ︸
variance

, ((6) restated)

which follows from the fact that E[mT (x)] = m(x), which allows us to replace the outer expectation in the bias
term with just m(x).

The “bias” term is simply the objective we began with in equation (3) in the main text, which was then
decomposed into Expected KL and Mutual Information in equation (4).

A.2.2 Upper-Bounding Variance

Next, we will show that the “variance” term with T components, var(T ) ≡ E [KL(mT (x)||m(x))], is upper-
bounded by

var(T ) ≤ Eθ
[∫

x

q(x; θ) log
α(T )q(x; θ) + (1− α(T ))m(x)

m(x)
dx

]
, (A.3)

where α(T ) ≡ 1
T is a weight that interpolates between q(x; θ) and m(x) in the numerator of the log. Note that

the expectation inside var(T ) is over all {θ(1) . . . θ(T )}, and the expectation on the right is over a single θ. At
T = 1, this tight because var(1) = E [KL(q||m)] = I[x; θ], and as T → ∞, this is tight because var(T ) → 0 and
this bound goes to E [KL(m||m)], which is 0.

Proof: We begin by expanding out the definition of var(T ) as

var(T ) = E

[∫
x

(
1

T

T∑
t=1

q(x; θ(t))

)
log

mT (x)

m(x)
dx

]
.
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Figure A.1: Numerical check of the approximation to variance in equation (7) as a function of the number of
components, T . The true variance is shown in black, and the approximation in (7) is shown in red. All values
are computed using Monte Carlo estimators, and error bars indicate ± Monte Carlo Standard Error (MCSE).

Next, we will pull the sum outside of the expectation, and break the expectation into t and ¬t (not t) terms:

var(T ) =
1

T

T∑
t=1

Et
[
E¬t

[∫
x

q(x; θ(t)) log
mT (x)

m(x)
dx

]]
.

Next, we will likewise break mT (x) into t and ¬t terms, and push the expectation over ¬t inwards:

var(T ) =
1

T

T∑
t=1

Et

[∫
x

q(x; θ(t))E¬t

[
log

1
T q(x; θ(t)) + 1

T

∑
t′ 6=t q(x; θ(t

′))

m(x)

]
dx

]
.

Applying Jensen’s inequality to the expectation over ¬t (E[log f ] ≤ logE[f ]) gives the following bound:

var(T ) ≤ 1

T

T∑
t=1

Et

∫
x

q(x; θ(t)) log

1
T q(x; θ(t)) + E¬t

[
1
T

∑
t′ 6=t q(x; θ(t

′))
]

m(x)
dx

 .
Note that E¬t

[
1
T

∑
t′ 6=t q(x; θ(t

′))
]

= T−1
T m(x), and so

var(T ) ≤ 1

T

T∑
t=1

Et

[∫
x

q(x; θ(t)) log
1
T q(x; θ(t)) + T−1

T m(x)

m(x)
dx

]
.

Now that all references to t′ and ¬t have been dropped, the outer sum over
∑T
t=1 can be dropped, as it is T

copies of the same sum. Finally, since T−1
T = 1− 1

T , we arrive at

var(T ) ≤ Eθ
[∫

x

q(x; θ) log
α(T )q(x; θ) + (1− α(T ))m(x)

m(x)
dx

]
,

with α(T ) ≡ 1
T . �

A.2.3 Approximating Variance

Applying Jensen’s inequality to the numerator of the log gives a lower bound on this upper bound, which we
denote by ≶:

var(T ) ≶ Eθ
[∫

x

q(x; θ)

(
α(T ) log

q(x; θ)

m(x)
+ (1− α(T )) log

m(x)

m(x)

)
dx

]
= Eθ [α(T )KL(q(x; θ)||m(x)) + (1− α(T ))KL(m(x)||m(x))] ,
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which then simplifies to

var(T ) ≶ α(T )Eθ
[∫

x

q(x; θ) log
q(x; θ)

m(x)

]
=

1

T
I[x; θ] ,

which is the estimate used in the main paper in equation (7). This approximation is plotted in Figure A.1 for
one example run of HMC, as described in Appendix B below.

A.3 Proof of Theorem 2

Theorem 2 claims that solutions to (5) for intermediate values of λ – along the Pareto front in Figure 2f – result
in continuous and monotonic changes to both the “bias” or KL(m||p) as well as the “variance” or I[x; θ] using
the approximation from the previous section.

Both claims follow from the concavity properties of the objective with respect to changes in the ψ density. Mutual
Information is well-known to be a concave functional (but not strictly) of each of its marginal distributions. For
a fixed q family, let I[ψ] denote the Mutual Information between x and θ using ψ as the mixing distribution.
The concavity of I means that

I[αψ1 + (1− α)ψ2] ≤ αI[ψ1] + (1− α)I[ψ2] ,

for 0 ≤ α ≤ 1. The Expected KL term, or Eψ[KL(q||p)], is linear with respect to changes in ψ. Further, both
Mutual Information and Expected KL change smoothly with small changes in ψ.

Together, the concavity of Mutual Information and linearity of Expected KL imply that the total weighted
objective in (5) is concave and smooth with respect to ψ for the relevant regime of λ ∈ [1,∞).

We would like to know the relative changes in the Pareto-optimal values of Mutual Information and Expected
KL as λ changes, or

∂

∂λ
I[x; θ]∗

∂

∂λ
E[KL(q||p)]∗

using ∗ to denote that these are changes in the optimum. The Implicit Function Theorem applies, and λ itself
is equal to the slope of the Pareto-front, or

λ =
∂I[x; θ]∗/∂λ

∂E[KL(q||p)]∗/∂λ
.

Further, since both Mutual Information and Expected KL are positive, as long as λ > 1, this implies that
increasing λ results in (i) positive changes in I[x; θ], and (ii) positive but smaller changes in E[KL[q||p]]. Thus,

∂

∂λ
I[x; θ]∗ > 0 ,

which completes the proof of the statement that (approximate) variance increases monotonically with λ. Also,
(ii) implies that

∂

∂λ
KL(m||p) = (E[KL(q||p)]∗ − I[x; θ]∗) < 0 ,

which completes the proof of the statement that variance decreases monotonically with λ. �

B NUMERICAL DETAILS

All code to generate the figures in this paper is available publicly online; the repository URL will be shared
after the double-blind review process is complete. Python libraries used include NumPy, SciPy, PyTorch, and
Matplotlib (Harris et al., 2020; Virtanen et al., 2020; Paszke et al., 2019; Hunter, 2007). Jobs running sampling
chains across a grid of parameters were managed using GNU Parallel (Tange, 2020).

We used three toy distributions in our results:
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• The “banana” distribution over R2, defined as

log p(x, y) = −(y − (x/2)2)2 − (x/2)2 .

• The “cigar” distribution over R2, which is a normal distribution with a marginal variance of 1 on both x
and y and a correlation of 0.99.

• The “Laplace mixture” distribution over R1, defined as

p(x) ∝ 0.4e
|x+1.5|

0.75 + 0.6e
|x−1.5|

0.75 .

B.1 Hamiltonian Monte Carlo (HMC)

We implemented HMC (Neal, 2010) using PyTorch (Paszke et al., 2019) for automatic differentiation. We
implemented a custom warm-up or tuning phase, starting with 200 randomly chosen “seed” points drawn from
a zero-mean isotropic normal distribution of whatever dimension the space was that was being sampled. These
points were then advanced, by gradient ascent, up the log probability for 100 steps. The average negative
curvature of the log probability across the resulting set of points was used to set the mass in each dimension,
passing the curvature through a softplus function to handle cases where average curvature was convex.

Each of these 200 seed points was then run for a single run of leapfrog integration to adapt the integration step
size towards a target acceptance rate of 0.8 at a total integration time of 2.0 (Hoffman and Gelman, 2014). This
completed the “tuning” phase.

Samples were then generated, and initial burn-in samples discarded, using the standard HMC procedure (Neal,
2010).

B.2 Details for Figure 1

A grid of x = (x, y) values were created for the underlying contour plot, using the “banana” distribution defined
above. The “sampling” panel was created by running the HMC sampler described above directly on x. The
“variational” panel was created by initializing a random 2D Multivariate Normal with isotropic covariance, then
using Newton’s method to optimize its parameters, θ = {µx, µy, log σ} to minimize KL(q||p). The “Proposed
compromise” panel was created by running the same HMC sampler described above, but now on θ instead of x,
using logψ(θ) as defined in (11), with λ = 2..

B.3 Details for Figure 2

The sketch on the left of Figure 2 was done by hand. The panels on the right half of Figure 2 were generated using
the “Laplace mixture” distribution described above. For each value of λ, we manually annotated a “window” of
θ = {µ, log σ} values to plot. For each one, a grid of θ values was created and logψ(θ), using (11), was evaluated
at every point in the grid. This was then transformed to a normalized distribution for the contour plots in the
rightmost column of the figure. The mixtures were created by simply evaluating the weighted sum,

m(x) =
∑
θ

ψ(θ)q(x; θ)

for every θ in the grid. The red points and corresponding components were sampled directly from the discretized
grid of ψ(θ) values using multinomial sampling.

B.4 Details for Figure 3

For each of the “banana” and “cigar” distributions, we ran a HMC sampler over θ as described in section B.2
above. We selected a grid of λ values and ran HMC for 10000 samples per value of λ.

To compute bias and variance, we generated a random polynomial of degree 4, where each coefficient of degree p
was drawn from N (0, 1)/p!. We estimated the unbiased expectation using scipy’s built-in quadrature integration
tool dblquad. For each value of λ, we estimated bias using the full m10000(x) mixture. We then estimated the
variance of mT (x) by subsampling T components from the full set of 10000 samples repeatedly and computing
the sample variance of EmT

[f ]. The integral of the random polynomial under each individual Gaussian kernel
was computed using Gaussian quadrature using the Numpy function hermgauss.
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B.5 Details for Figure 4

This figure uses the same 10,000 samples from the previously described HMC chains at each λ, as well as
the variance of EmT (x)[f(x)] = 1

T

∑T
t

∫
x

q(x|θt)f(x) as a function of T . Bias (KL(m(x)‖p(x))) and variance
(KL(mT (x)‖m(x))) were calculated as above for each T and λ. Then, for each T , we selected the minimum value
of the mean-squared error of the expected function as the selected value.
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