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ABSTRACT

This perspective piece is the result of a Generative Adversarial Collaboration (GAC) tackling the1

question ‘How does neural activity represent probability distributions?’. We have addressed three2

major obstacles to progress on answering this question: first, we provide a unified language for3

defining competing hypotheses. Second, we explain the fundamentals of three prominent proposals4

for probabilistic computations – Probabilistic Population Codes (PPCs), Distributed Distributional5

Codes (DDCs), and Neural Sampling Codes (NSCs) – and describe similarities and differences in6

that common language. Third, we review key empirical data previously taken as evidence for at least7

one of these proposal, and describe how it may or may not be explainable by alternative proposals.8

Finally, we describe some key challenges in resolving the debate, and propose potential directions to9

address them through a combination of theory and experiments.10
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1 Introduction13

Helmholtz observed that the sensory inputs to the brain are insufficient to give rise to the rich perceptual world14

that we experience, and that perception should be conceptualized as an active inference process which combines15

prior experiences with sensory inputs to form beliefs about behaviorally relevant features of the external world16

[Von Helmholtz, 1867, Kersten and Yuille, 2003]. Over the past few decades, a large body of research has supported17

this view, demonstrating that humans and animals display behaviors that are sensitive to the relative uncertainties in18

their inputs and prior knowledge [Ma, 2012]. Despite this extensive body of task specific research, there is still no19

consensus regarding either the means by which the computations that underlie this process are performed by neural20

circuits or the means by which neural activity represents uncertain beliefs[Fiser et al., 2010, Pouget et al., 2013].21

In the absence of computational limitations, the optimal way to deal with uncertainty is via Bayesian inference, which22

provides normative means by which subjective probabilities should be updated and utilized [Laplace, 1812, Jaynes,23

2003]. However, debates continue about whether inference in the brain is actually probabilistic [Rahnev et al., 2020,24

Orhan and Ma, 2017], and the jury is still out whether it is close enough to optimal to make Bayesian inference a useful25

mathematical framework for understanding the brain [Ma, 2012]. Even within the context of Bayesian inference it is26

unclear whether probabilistic beliefs about inferred (latent) variables are computed ‘constitutively’ across all latents, or27

are constructed ‘opportunistically’ in response to task demands [Koblinger et al., 2021]. For the purposes of this paper28

we will assume that there is some population of sensory neurons whose activity can be interpreted as a probabilistic29

belief about some latent variable, and we will focus on the relationship between this belief and neural activity.30

A series of prior studies has addressed this question and presented models falling into three broad categories of ‘neural31

codes’: probabilistic population codes (PPCs) [Ma et al., 2006, Jazayeri and Movshon, 2006, Deneve, 2008a,b, Beck32

et al., 2008, 2012], distributed distributional codes (DDCs) [Sahani and Dayan, 2003, Vértes and Sahani, 2018, Pitkow,33

2012], and neural sampling codes (NSCs) [Hoyer and Hyvärinen, 2003, Fiser et al., 2010, Savin and Deneve, 2014,34

Orbán et al., 2016, Haefner et al., 2016, Aitchison and Lengyel, 2016]. While each of these models is supported by35

empirical evidence, it is often unclear how well the presented data exclude alternative models, and studies that directly36

compare multiple coding schemes are rare [Grabska-Barwinska et al., 2013, Ujfalussy and Orbán, 2022]. Furthermore,37

comparisons across multiple papers are complicated by the fact that notation often differs, and differing assumptions38

are at times left implicit. In fact, recent work has identified some differences in assumptions and close relationships39

between models previously seen as mutually exclusive [Shivkumar et al., 2018, Lange et al., 2023], pointing to a need40

for a systematic comparison of approaches, standard notation, and shared metrics of success. This review is an attempt41

to develop a common language and notation by proponents of different theories of probabilistic representations. After42

we present a unified and consistent language for representations (Section 2) and computations with them (Section 3), we43

then use that language to review the basics of the three major classes of theories, as well as formal connections between44

them and a case study of how they compare on a simple inference task (Section 4). In Section 5 we systematically45

describe how these models each interpret a common set of empirical observations. Finally, in Section 6 we will note46

some of the inherent difficulties in comparing probabilistic coding schemes, and provide guidance for theoretical and47

empirical research designed to distinguish between the different theories.48

1.1 Why probability in the brain?49

The benefits of probabilistic computation are uncontroversial. It has been known since Laplace [Laplace, 1820] and50

from the Dutch Book Theorem [Ramsey, 1926] that probabilities provide the optimal way to empirically reason about51

the world and form decisions in the presence of uncertainty. Furthermore, ample behavioral evidence has shown that52

perceptual and sensorimotor decisions are sensitive to changing uncertainty in a manner approximately consistent with53

probabilistic inference [Knill and Richards, 1996, Knill and Pouget, 2004, Ma et al., 2006, Fiser et al., 2010, Pouget54

et al., 2013]. This implies that the brain represents uncertainty (if not entire probability distributions) over task relevant55

stimuli, implements the operations of probabilistic reasoning, and generates decisions based on that representation. We56

would like to understand the neural basis of these computations, and in particular whether there is a unifying theory that57

can explain how the brain computes with probabilities.58

The existence of such a unifying theory is not a foregone conclusion. The brain may have learned to represent and59

manipulate probabilities in different ways for different tasks and variables it encounters. Probabilistic computations60

could arise in a highly flexible neural networks simply by extensive experience with naturally structured tasks [Orhan61

and Ma, 2017], as optimizing performance requires taking into account trial by trial fluctuations in uncertainty. Just62

because uncertainty must be represented and incorporated into the calculus of decision making does not mean that it is63
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represented in the same generalizable manner for every task and latent variable, although there is some evidence in64

support of that claim [Houlsby et al., 2013]. That said, several theories posit that there are general purpose, recurring65

motifs for representing and computing with probabilities. These motifs should arise with similar properties across a66

range of variables and tasks. If such a structure were to exist, then it would provide the brain with a powerful inductive67

bias that would generalize efficiently to new tasks. An inductive bias favoring learning and using probabilities could be68

embodied in large-scale architecture, microcircuit structure, and savvy plasticity rules [Sinz et al., 2019].69

1.2 What makes a ‘good’ neural representation?70

Of course probabilistic information is already present at the retina, because one can always apply Bayes rule. That is71

not sufficient to count as a brain representation. Instead, a representation needs to be used in some way [Baker et al.,72

2021a].73

Representations need to be evaluated in terms of how well they explain empirical observations. However, it is also74

important to consider how well representations can be implemented and used by the brain. Three common desiderata75

for a ‘good’ neural representation are: efficiency, representational simplicity, and computational convenience (also76

see Pohl et al. [2024]). Efficiency is typically measured in terms of bits per spike. It makes use of the notion that one77

goal of the brain is to represent as much behaviorally relevant information as it can with minimal energy expenditure.78

‘Representational simplicity’ refers to ease of decoding of a neural representation by downstream circuits constrained79

by computational complexity, time, and data.80

In statistical terms, a simple representation is one in which knowledge of low-order statistics like the mean and variance81

allow for efficient decoding. In contrast, a complex representation would relegate the encoding of objects and their82

poses, textures, and other properties, as well as the uncertainties about these properties, to complex, high-order statistics.83

A related coding principle is computational convenience. Certain representations make some computations easier to84

implement using the operations available to neural circuits. It is typically assumed that linear operations are easy, even85

though individual biological neurons are capable of more complex computations [Poirazi et al., 2003, Beniaguev et al.,86

2021, Jones and Kording, 2021, Gidon et al., 2020]. Two example fundamental computations of particular interest in87

probabilistic inference are the sum rule and product rule of probability. Later we will see that different theories of88

probabilistic representations give these operations different complexities.89

Table 1: Glossary of notation.

symbol meaning symbol meaning
s World state
o Observation
z Latent variable in brain p(o|z)p(z) Generative model in brain
t Time T (z) Statistic

q(·) Approximate posterior η Natural parameter
Eq(x|y)[·] Expectation over q(x|y) µ Expectation parameter

r Neural responses U(s, a) Utility
ν Nuisance variable (external noise) ξ Internal neural variability (internal noise)
w Synaptic weight a Action

2 What does it mean for the brain to represent probabilities?90

We say that a neural activity pattern represents a probability distribution if there is a mapping between neural activity91

and probability distributions and if subsequent neural computations are consistent with the rules of probability and the92

proposed mapping [Luce et al., 1990, Zemel et al., 1998, Baker et al., 2021b, Lange and Haefner, 2022]. For further93

discussion and nuance on the nature of representations, see [Baker et al., 2021a].94

In the Bayesian perspective, probabilities are subjective constructs. However, these subjective probabilities are grounded95

in a model of the data generation process and computations based upon that model. We assume that the brain’s model96

of the world is based on a generative model of its sensory inputs (for a discussion of the differences between modeling97

the brain in terms of discriminative vs. generative models see [Peters et al., 2024]). This comprises a set of assumptions98

about the latent variables that generate or cause the animal’s sensory inputs. A good generative model is useful99

because it can allow the brain to explain the sensory data by drawing inferences about those latent causes (analysis by100

synthesis [Kersten and Yuille, 2003]). Exact inference is intractable in general, and there will be algorithmic shortcuts101

or implementation constraints that lead to inferences that are only approximations to posterior distributions obtained102

through Bayes’ rule. Theories about probabilistic brain computations often include such approximations.103
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Figure 1: Relationships between key quantities for probabilistic inference. A: Schematic of the different elements of
Bayesian inference and its neural implementation. Not to be interpreted as a graphical model! B: The computational
goal of a Bayesian brain is to infer the brain’s latent variables z from observations o. C: Inferential dynamics at the
algorithmic level, for a static problem. Latent causes in the world generate observations, which the brain interprets
through approximate inference dynamics in terms of its own latents z, eventually producing an action or decision. In
theoretical models of inference, neural activity is a consequence of these algorithmic dynamics. D: In reality, the physical
mechanism or implementation of this process has a different causal diagram without the interpretable approximate
posteriors, and the inferential dynamics are merely an abstract interpretation of the activity in the biophysical system.

To construct a testable, quantitative theory of how the brain computes with probabilities, we need to relate probabilities104

and brain signals, defined based on several considerations: First, what latent variables or events z are the probabilities105

about? Second, what generative model p(o|z)p(z) are the probabilities based on? Third, what aspects of neural activity106

r represent the information about z? Fourth, given the latent variables z and observations o, what aspects of a posterior107

probability p(z|o), or its approximation q(z|o), are captured by r? Given answers to those four questions, we can108

construct a model for how r represents q(z|o) (Figure 1).109

2.1 What is z? What variables are the probabilities about?110

A crucial question for neural theories of probabilistic computation is, what are the intermediate latent variables z whose111

probabilities the brain may represent? These intermediate variables may have some causal status, e.g. the depth of112

different objects in a scene affects occlusion and thus the visual input, or they may be pragmatic constructs that make it113

easier for a brain to summarize sensory sensory input in a way that is useful for predicting the effects of actions on114

future inputs. For example, a set of oriented edges can be summed to create a compressed representation of an image115

while preserving the information needed to identify the pictured object [Olshausen and Field, 1997]. Either way, the116

brain has no access to an objective truth about the identities or values of intermediate latent variables and must rely on117

observations and the generative model assumptions about the relationships between latent variables to reason about118

them.119

One possibility is that the brain should represent posteriors only over the variables that one can act upon. This is120

based on the idea that the goal of perception is, ultimately, to guide actions [Gibson, 1979, Shadlen et al., 2008]. To121

select good actions you need predictions about what those actions will do. Moreover, since the future is unknown and122

different outcomes have different consequences, it is useful to represent probabilities of those outcomes in order to123

evaluate the benefits and risks of different options as is done in Bayesian reinforcement learning [Dayan and Daw, 2008,124

Maloney and Mamassian, 2009] and active inference [Sajid et al., 2021]. In this setting, variables that have no predictive125

power in the relevant action space do not influence behavior and thus need not be encoded. We call task-irrelevant126

variables ‘nuisance variables’, ν, and a major computational goal of the Bayesian brain is to construct a representation127

of probabilities that are invariant to these nuisance variables.128

An alternative possibility is that the brain constructs a task-independent model of the world that accommodates many129

situations, including those never seen before, and that the brain is always performing inference unconsciously, even130

when it is not performing a specific task ([Von Helmholtz, 1867], for a review see [Koblinger et al., 2021]).131

However, even if inferring actionable variables is the eventual goal of the brain, there is often a complicated causal132

path to sensory observations from these latent variables. To perform inferences about the target variables, it may133

help to construct probability distributions over intermediate latent variables on that causal path [Peters et al., 2017].134

Additionally, when tasks are amorphous and changing, it may help to represent latent variables that could later become135

actionable [Flesch et al., 2018], i.e. variables that lead to good generalization. Thirdly, the brain may benefit from136
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constructing representations that facilitate subsequent learning or compress previous data. In each of these cases,137

representing a joint probability distribution about intermediate latent variables leads to better inferences.138

2.2 What is o? What evidence are the probabilities conditioned on?139

Probabilistic computations are based on evidence, whether it is the most immediate sensory observations or the140

evolutionary history of our ancestors. We usually assume that information from our evolutionary history is summarized141

in the architecture of the brain and modeled by prior belief about how the world works. Information about what we142

have learned from previous experience is summarized in our synapses, while the neural activity (and perhaps short-term143

synaptic state [Mongillo et al., 2008]) is responsible for encoding information about recent sensory evidence and relevant144

latent variables. This recent evidence is what we will call observations o, and they determine the posterior probabilities145

p(z|o) over latent variables that are of immediate interest. Below we discuss how the brain may approximate this ideal146

posterior by some other distribution q. A model of probabilistic computation should therefore specify what observations147

o these probabilities are conditioned on.148

What we count as an observation depends on the system we consider. Patterns of light are observations for the visual149

system, and patterns of sound are observations for the auditory system. But even within one modality, different150

subsystems receive different inputs: we might consider light as an observation for the retina, while the retinal ganglion151

cells’ outputs are observations for the brain. In a broad, colloquial sense, we can consider an observation to be any152

input to a designated system. At the same time, there is a narrower, more technical definition of observation when we153

are considering probabilistic computation: an observation o is whatever the posterior q(z|o) is conditioned on. This154

requires making explicit modeling choices.155

In vision, for example, one might consider o to denote the image, or the photoreceptor activations which provide156

the only evidence about the image, or the retinal output: none of these receive cortical feedback and thus can be157

treated strictly as inputs to downstream computations. Any computations performed by the retina itself, between image158

and retinal output, could be either modeled as part of the generative model using intermediate latent variables or,159

alternatively, as a potentially dynamic sensor that is not necessarily Bayesian in any meaningful way, and whose output160

is modeled as the observation from the perspective of the rest of the brain.161

Ultimately, building a Bayesian model of some system requires defining the boundary of the system. In a Bayesian162

framework, system inputs constitute the observations, and the output constitute “actions.” When modeling a cortical163

circuit, actions could simply consist of the transmission of the represented posterior. More generally, actions influence164

future observations and can be treated as either latents (represented by corollary discharge) or as part of subsequent165

observations. For example, in an active inference or Bayesian reinforcement learning setting, the goal is often to166

compute a posterior distribution over actions that maximize rewards. At the behavioral level, only one action is actually167

selected which, if directly observed, becomes part of the subsequent observations.168

Other considerations that determine where observation ends and inference begins include timescales of the relevant169

behavior, feedback between sensory and cortical areas, and the effects of actions such as eye movement on future170

observations. For example, one might formalize intended actions as latents that affect future observations (e.g. as171

corollary discharge), or include actions themselves as observations. Because of this complexity, it is often best to adopt172

a systems view in which observations consist of the complete set of signals that drive the system of interest.173

Where does sensory observation end and inference begin? Here, for simplicity of definition, we’ll assume that the174

observation is constant over one inference step (whatever that means). However, this is usually not the case and things175

get messy. This is a tricky question, and one we do not claim to answer. There are questions of timescale, feedback,176

interaction with the environment, or an inability to make a clear separation between changing o and the inference given177

a single o.178

One crucial distinction between observations o on which probabilities are conditioned, and the neural activity r that179

represent those probabilities, is that r should summarize the relevant aspects of the recent past, whereas o provides180

information only from the current moment in time. Finally, the probabilities could in general incorporate all available181

evidence, including the animal’s own actions a1:t, which influence the world and thus the probability through p(z|o,a).182

One might formalize intended actions either as latents or as part of the observations via feedback from the motor plant183

(e.g. as corollary discharge).184

2.3 What happened to s? What about the experimentally defined task stimulus?185

The term “stimulus” often refers to either specific properties of observable inputs, as for gratings or random dot186

kinematograms [Hubel and Wiesel, 1962, Parker and Newsome, 1998], or the entire observable stimulus o, as in studies187
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Box 1. The importance of the distinction between s and z. The distinction between z and s is crucial and
consequential when empirically testing the predictions of different probabilistic encoding schemes. Here, we provide
three illustrations of the importance of this distinction:

Primary visual cortex (V1): Due to the strong orientation-selectivity of V1 neurons [Hubel and Wiesel, 1962], a
dominant account of area V1 has been that it ‘represents orientation’ (among other things, like spatial frequency,
binocular disparity, etc.) Equating s (here orientation) with z leads to the conclusion that V1 responses are incompatible
with a sampling-based representation, since that would imply that higher stimulus contrast, i.e. higher certainty about
the stimulus orientation, leads to narrower tuning curves. However, the tuning curves in V1 appear to be approximately
contrast-invariant, i.e. scale multiplicatively with contrast, suggesting a falsification of the neural sampling hypothesis.
If, on the other hand, one assumes that z represents the intensity, or absence and or presences, of (e.g. Gabor-shaped)
image patches at the receptive field location [Olshausen and Field, 1997, Bornschein et al., 2013], then this conclusion
changes, and even a sampling-based representation predicts an approximately multiplicative scaling of orientation
tuning curves with contrast. In particular, [Shivkumar et al., 2018] showed that implementing neural sampling in such
a sparse model appears like a probabilistic population code (PPC) when interpreted as a code over orientation (s).

Medial temporal area (MT): Hoyer and Hyvärinen were the first ones to suggest that neural responses could be
interpreted as samples from a posterior distribution over latent variables (in their case intensity of localized patches
learnt from natural images), and that their variability might reflect the uncertainty in the brain’s beliefs [Hoyer and
Hyvärinen, 2003]. However, an analysis of the responses of a large number of neurons in area MT did not find a
higher response variability for stimuli whose velocity was more ambiguous — an apparent contradiction of the neural
sampling hypothesis (unpublished, private communication by Eero Simoncelli). The assumption underlying these
analyses was that since MT neurons are strongly tuned to motion direction, s (in addition to other variables), the
represented beliefs would also be over s, such that higher uncertainty about s should be reflected in higher response
variability. However, it is not clear whether MT responses in fact represent beliefs over motion direction or velocity,
not some other variable z, e.g. the absence or presence of motion primitives, which might make different predictions
(in analogy to V1, see paragraph above).

Hippocampus (CA1): In a recent study, Ujfalussy and Orbán directly compared a set of neural predictions
from three neural codes, PPC, DDC, and neural sampling, using simultaneous recordings from dorsal CA1 in the
hippocampus. The analysis exploits the fact that neural responses during different phases of the theta cycle are
believed to represent an animal’s location at different times in past and future [Ego-Stengel and Wilson, 2007], with
predictions increasing in uncertainty the further one goes into the future. This allows for strong qualitative predictions
while avoiding the need to commit to a particular generative model about how location beliefs are updated in the light
of sensory evidence. However, the analysis still relies on the assumption that the z about which activity in area CA1
represents beliefs is the animal’s trajectory. While this assumption is at least as plausible as the assumption that V1
represents orientation, or MT represents motion direction, there is ample evidence that CA1 represents more a general
variable than location [Eichenbaum, 2018, Jarzebowski et al., 2022, Sugar and Moser, 2019], and it is unclear whether
the conclusions of [Ujfalussy and Orbán, 2022] would generalize for a broader definition of the latents.

with naturalistic images or sounds. Neither of these quantities necessarily directly correspond to the latent variables z188

that neurons represent, as we describe below.189

Experimental stimuli s are often parameters of the observable sensory input provided to the brain o. For example,190

videos may be built from oriented gratings or dots moving with some coherence in some direction. These variables are191

only a subset of the variables that define the sensory input, o.192

Many neuroscience studies take a philosophically distinct approach to asking questions about representations. They193

ask not about latent variables z obtained from a computation model, but instead focus on experimentally controlled or194

measured stimuli, s, like orientation [Hubel and Wiesel, 1962] or spatial location [Sherrington, 1906, O’Keefe and195

Dostrovsky, 1971] that strongly modulate neural activity.196

Importantly, the latent causes z in the brain’s model of the world need not agree with the experimentally-defined stimuli197

s. Typically, the experimentally controlled s only have some correlation with the brain’s latent z. For this reason it’s198

important that we search for latents z for which neural activity forms computationally useful representations. This199

latent variable approach eschews intuitive definitions of stimuli, like orientation or objects, and provides a framework200

for discovering sophisticated latents that better describe neural activity that drives behavior (see Box 1).201
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2.4 What is p What is the posterior probability that the brain would like to infer?202

Bayesian inference computes beliefs about unobserved latent variables z given a set of observations o and a generative
model, p(o|z)p(z), by applying Bayes’ rule:

p(z|o) ∝ p(o|z)p(z) (1)

for a likelihood p(o|z) and a prior p(z). The likelihood captures the brain’s assumptions about how observations o arise203

from latent causes z. The prior captures the knowledge about the frequencies or values of causes and their dependencies204

on each other. This distribution is highly structured for natural inputs, and is often modeled as a hierarchical graphical205

model that efficiently expresses the conditional dependencies in p(z). Together, these terms define a generative model206

of the world — a way of explaining how the observations were generated by latent causes in the environment. It is207

important to note that there need not be a direct correspondence between the brain’s latents and quantities in the external208

world. As such, p(o, z), denotes the brain’s subjective generative model of the world and p(z|o) denotes the posterior209

consistent with that generative model, and not some unknown (and unknowable) probability that describes how the210

world actually works, e.g. in terms of physics.211

2.5 What is q(z|o)? What is the brain’s approximate inference?212

Inference in the brain is necessarily approximate. We denote by q(z|o) as the brain’s approximation to the exact213

posterior p(z|o) given its own subjective generative model (here, assumed to be fixed after learning). The general214

underlying assumption is that the inference dynamics try to compute a q that best approximates the desired p by some215

measure. While the nature of q depends on the specific approximate inference algorithm, it should be a well-defined216

probability distribution and not a point estimate.217

Note that there is some flexibility about which approximations define the inference q versus the generative model p:218

one might define an altered generative model such that the q is an exact posterior according to that model. Making219

assumptions explicit and testing how well they generalize is the key to discriminating between such model components.220

2.6 What is r? Which neural properties do the representing?221

In this paper, we will primarily consider neural activity as the seat of probabilistic computation. Previously proposed222

candidates in this context are membrane potentials [Orbán et al., 2016], spikes [Buesing et al., 2011, Pecevski et al.,223

2011, Legenstein and Maass, 2014, Savin and Deneve, 2014], and spike rates [Hoyer and Hyvärinen, 2003, Ma et al.,224

2006, Vasudeva Raju and Pitkow, 2016]. Some theories posit that probabilities are represented as a spatial code of spike225

counts in a long temporal window, manifested across neurons [Ma et al., 2006, Vértes and Sahani, 2018]. Other theories226

including temporal sampling and timing codes [Hoyer and Hyvärinen, 2003, Berkes et al., 2011, Orbán et al., 2016,227

Savin and Deneve, 2014] assert that the time series is the locus of probabilistic representations. Most generally, patterns228

of neural activity across both space and time may represent probabilistic information [Savin and Deneve, 2014].229

It is an open empirical question which of these types of neural response properties provide the most parsimonious230

description of probabilistic neural computations. Since spike times can be seen as a summary statistic of the underlying231

membrane potentials, and spike rates of the underlying spike times, a key question will be whether the respective lower232

level of description will have predictive power beyond that provided by the higher level description [Hoel et al., 2013].233

2.7 What is the relationship between r and q? How does neural activity represent probabilities?234

Neural activity evolves according to biophysical mechanisms. Probabilistic models propose that these mechanisms235

can be interpreted as if they are implementing meaningful computations. The hypothesized link between r and q236

specifies the relationship between some biophysical properties and computationally meaningful ones (e.g. parameters237

of q, or samples from it, Figure 2). This link determines whether neural representations are mixed (multiple parameters238

or samples or statistics of q contributing to each neuron’s responses) [Rigotti et al., 2013] or ‘pure’ (with only one239

aspect of q contributing to each neuron) [Hoyer and Hyvärinen, 2003, Fiser et al., 2010]. And it determines whether240

q is represented by individual neurons, or distributed across populations. Specifying this link is crucial for making241

testable neurophysiological prediction from any computational theory. Indeed, the mathematical link between r and q242

constitutes a primary distinction between the various probabilistic representational schemes.243

Some coding schemes assume that the map between r and q is stochastic, even when the observation o is fixed. Trivially,244

this occurs when neural dynamics are noisy or not fully observed (nuisance variability), but can also be a product of245

a inference algorithm that that relies on optimization via stochastic gradient descent. These kinds of nuisance and246

computational variability are expected to be present even when parameteric schemes are utilized. Sampling based247

schemes, on the other hand, assume that neural variability is part of the approximate q itself, i.e. neural variability248
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Figure 2: Examples of how a posterior distribution q(z|o) (a) could be mapped to neural activity. The distribution could
be parameterized (b) and these parameters (c) could be mapped to neural activity (e). Alternatively, samples from the
posterior (d) could determine neural responses. It is also possible to interpolate between these options, sampling the
parameters [Lange et al., 2022] (Adapted from [Lange and Haefner, 2022].)

is proportional to posterior’s uncertainty [Lange and Haefner, 2022]. From an encoding perspective, the posterior is249

“located” in the circuit and sensory input that together generates stochastic responses. On the other hand, downstream250

circuits do not have access to this process, and only can access the stochastic neural activity. From a decoding251

perspective, therefore, we can say there may be a distribution over posterior distributions, and write any realized252

posterior as a sample from it, q(z|o) ∼ P [q(z|o)]. This stochasticity has important implications for how we interpret253

neural variability, a topic we will return to in section 5.2.254

3 What are the dynamics of probabilistic computations?255

To understand how the brain computes with probabilities, we need to relate the dynamics of the neural activities256

dr/dt to the dynamics of the posterior probabilities dq/dt they represent. The specific relationship between these two257

quantities depends both on the format of the probabilistic representation and on the inference algorithm used to update258

approximate posteriors.259

Additionally, on a slower timescale, we assume that the circuits’ parameters changes over time as dθ/dt as the circuit260

learns an improved generative model through dp/dt and an improved approximate inference model. The next sections261

describe crucial properties of each of these computational dynamics.262

3.1 What are the relevant timescales?263

Computations unfold over time. For a Bayesian brain, there are multiple temporal processes that are helpful to264

distinguish. Learning: At the slowest timescale, the brain learns the rules of the world. This corresponds to changes in265

the generative model, d
dtp(z,o). Inference: This generative model describes a world of dynamic latent variables zt that266

can be inferred using a time series of observations ot. These observations yield dynamic posteriors, d
dtp(zt|o−∞:t),267

changing over time either as new evidence comes in, or as the brain anticipates future states. These posteriors may268

be dynamic even for an ideal Bayesian computation with unbounded computational abilities, since the dynamics are269

imposed by the time-dependent observations. Algorithm: At a faster timescale, an approximate Bayesian brain will use270

computations that unfold over time. Typically, those computations are iterative, and converge to the desired endpoint,271
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Accumulating samples

Accumulating samples of parameters
computation time
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b
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θ2

computation time

a

z1

z 2 z 2 z 2

Parameter dynamics

p(z |o)

θ1

θ2

Figure 3: For a static posterior, p(z|o), the approximate posteriors, qt(z|o) generally change over time. a: Parametric
codes allow parameters θt to depend on time. b: Dynamics can produce sequences of samples, which when accumulated
gradually fill out the posterior. c: Dynamics can also produce sequences of sampled parameters [Lange et al., 2022]
rather than samples of latent variables.

through dynamics d
dtqt(z|o).

1 Implementation: Since a Bayesian brain requires a mapping between approximate272

posterior q and neural activity r, a dynamic algorithm will manifest as neural dynamics d
dtr even for a constant q.273

For simplicity, we will assume that the targeted posterior p(z) is constant over time, using evidence o that is also274

constant over time, so that neural dynamics correspond only to the algorithm and its implementation. In general, this is275

an unrealistic assumption as natural tasks invariably involve dynamic latent variables zt and series of observations ot.276

Nonetheless, the restriction to static cases is useful here because it allows us to more easily distinguish different model277

types. The concepts we describe in this paper can be extended to inference over a dynamic world.278

3.2 What is q̇? What are the inference dynamics?279

For a fixed observation and a fixed posterior p(z|o), the computation of an approximate q unfolds over time, hopefully280

bringing q closer to p (Fig.3). In temporal or spatiotemporal codes, the approximate posterior q only manifests as a time281

series, so subsequent computations need to synthesize information across time. In contrast, spatial codes represent the q282

completely within each relevant time window.283

For parametric codes and computations, the changes in the approximate posterior are captured by changes in the284

parameters, qt(z|o) = q(z|o, ηt), while for neural sampling codes they are the result of the changing set of samples.285

1We define q ≡ qt as the distribution implied by the current approximate computations, e.g. by the finite number of samples that
have been generated, or by the current values of the parameters of q even if they keep changing as part of an iterative algorithm.
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3.3 What is ṗ? How does the generative model change as it learns?286

As the brain gains experience in its environment, it can improve its model of the world, and use these changes to improve287

its inferences. Since we describe the brain’s generative model of the world by p(z,o), we refer to the learning-induced288

changes in that model as ṗ. Changes in an internal model are often attributed to synaptic plasticity ẇ, although there289

may be other physical mechanisms that may contribute, such as changes in bias or local nonlinearities, or even changes290

in the dynamics of short-term depression or facilitation.291

3.4 What is ṙ? How do neural dynamics relate to computational dynamics?292

Biological mechanisms cause neural activities to evolve over time, determining the dynamics ṙ. In a Bayesian293

framework, these changes in r are interpreted as changes in q as it both incorporates new data and evolves toward the294

approximate posterior via the action of the inference algorithm employed.295

Note that there may be some neural dynamics that are not relevant to the probabilistic representation, just as there may296

be some aspects of neural activity that do not encode relevant probabilities.297

4 Models of probabilistic representations298

Now that we’ve introduced the core ingredients of probabilistic models of the brain, we will consider these ingredients299

for three major model classes: Probabilistic Population Codes (PPCs), Distributed Distributional Codes (DDCs), and300

Neural Sampling Codes (NSCs). Each has its own computational advantages and disadvantages, and the brain may301

incorporate elements of more than one model. In Section 5 we will review the empirical evidence in support of each.302

4.1 PPCs303

Key idea: Probabilistic Population Codes (PPCs) assume that linear functions of neural activity represent natural304

parameters of a distribution, a core concept in probability we explain below. A direct consequence is that neural activity305

represents log probabilities. This makes it easy to multiply probabilities [Ma et al., 2006, Rao, 2004], as needed for306

cue combination and evidence integration. However, the other main probabilistic operation, marginalization, is more307

difficult.308

What is q? In PPCs, neural activity represents exponential family probability distributions over latent variables309

z by using simple encodings of natural parameters, η. Natural parameters are a mathematically convenient way to310

parameterize a probability distribution: in q(z) ∝ exp[φ(z)>η], the natural parameters are coefficients of sufficient311

statistics φ(z) for that distribution. For any given parameterized distribution, there is a unique relationship between312

natural parameters and the expectations of the sufficient statistic. For example, in a Gaussian distribution, the natural313

parameters are the the inverse variance and the mean divided by the variance.314

What is r? As the name implies, PPCs are population codes, and authors typically assume that the relevant aspect of315

neural activity is firing rate or spike counts in large populations in some small time window.316

Mapping between r and q: A PPC assumes that the natural parameters, η, are linear functions of neural activity r:317

η(o) =Mr(o). This allows us to write the posterior distribution as318

q(z|r(o)) = exp
[
φ(z)>Mr(o) + const(o)

]
(2)

where (φ(z)>M)i represents the contribution of neural response ri to the posterior log probability over z. The basis319

functions φ(z) determine the sufficient statistics of the associated exponential family distribution. For example, if φ(z)320

is restricted to quadratic functions, then the associated posterior is a multivariate Gaussian.321

PPCs only describe the dimensions of neural activity that are relevant to encoding the posterior. Other orthogonal322

dimensions of r are free to vary. (For downstream computations, these other dimensions serve as internal nuisance323

variables.) However, additional hypotheses about the neural activity may further constrain the connection between the324

task-relevant and -irrelevant aspects. For example, if r represents spike counts, as for independent Poisson neurons,325

then these responses must be integers. This can constrain the particular posteriors that can be represented, and may also326

constrain otherwise task-irrelevant variations that ensure that spike counts are integers. These additional assumptions327

are critical for making detailed neural predictions, to which we will return in Section 5.328
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What is q̇? In this paper, we focus on static inference problems, which can in principle be solved as a static nonlinear329

transformation of the sensory input, such as through a simple feedforward neural network with no dynamics. However,330

these problems may also be solved through an iterative algorithm [Vasudeva Raju and Pitkow, 2016]. If the code331

remains consistent over time, then the neural dynamics would then correspond to iterative updates of the posterior q.332

Conversely, approximate inference schemes such as variational inference produce updates to natural parameters for the333

posterior, and therefore imply specific dynamics for the neural activity in the probabilistic coding dimensions [Beck334

et al., 2012].335

What is ṙ? In PPCs, neural activity is linearly related to natural parameters, so when probabilities are multiplied,336

neural activity is added. One consequence is that the amplitude of the neural response encodes confidence, with higher337

amplitudes corresponding to narrower posteriors. In contrast, marginalization is more difficult to perform on the neural338

activity, requiring non-linear operations such as coincidence detection and divisive normalization [Beck et al., 2011].339

What is z? The PPC literature has largely focused on task-relevant latent variables in laboratory experiments340

performed by overtrained animals, such as orientation and contrast, or direction of motion and coherence. The initial341

focus on task relevant latents and decision variables has led to the misguided criticism that PPCs only applicable to342

simple tasks or are not fully Bayesian. However, subsequent work showed how more general latent variables could be343

represented by PPCs [Beck et al., 2011, 2012, Vasudeva Raju and Pitkow, 2016] with network implementations that344

allow a variety of flexible computations on multivariate generative models.345

What is o? When investigating specific computations, o is typically assumed to be either the sensory input or a346

pattern of neural activity that arises from the sensory periphery. For example, in vision, o could be either the image347

itself, the photoreceptor absorptions, or the output of retinal ganglion cells. In an odor discrimination task, o could be348

the activity of olfactory receptor neurons while the probabilistically encoding r is the activity of downstream neurons in349

the olfactory bulb and piriform cortex.350

4.2 DDCs351

Key idea: In the absence of uncertainty, the brain can represent the deterministic value of the latent variable z through352

a set of neuronal encoding functions {φi(z)}Ki=1 (Fig.4). Aligned with the conventional notion of tuning functions,353

the average firing rate of the neuron for the unknown value z0 is given by E[ri] = φi(z0), and some noise model354

(e.g. Poisson noise) captures the variability of the firing rate around the mean. However, due to the noise in the355

sensory system and intrinsic epistemic uncertainty, the brain generally needs to deal with a distributional belief over the356

latent variable z, i.e. p(z|o). Here, p(z|o) refers to the exact posterior distribution in the generative model. A natural357

extension of the notion of tuning function is to assume that the firing rate of the neuron is determined by the weighted358

sum of the values of its tuning function at potential instances of the random variable z, where the weights correspond to359

the probability of the instances [Zemel et al., 1998].360

The firing rate of the neuron i ∈ {1, ...,K}, is determined by361

ri =

∫
z

φi(z)p(z|o)dz. (3)

The distributional belief p(z|o) is therefore represented by K expected values of the encoding functions, abbreviated362

here by the vector r (Fig.4).363

The codes of this scheme are referred to as Distributed Distributional Codes (DDC), as they provide a representation for364

"distributional" beliefs, and the representation is actualized through the "distributed" activity of neurons. DDC is a365

natural extension of tuning functions—in the absence of uncertainty, the posterior distribution is a Dirac delta function,366

p(z|o) = δ(z − zo), and the DDC values are ri = φi(zo), i = 1, 2, ...,K, which align with the definition of tuning367

functions.368

Distributed distributional coding was first introduced in [Zemel et al., 1998] as "extended Poisson model" to provide an369

encoding scheme for distributions. In addition to the encoding scheme, the decoding of the distribution is discussed,370

and it is argued that one can actually find a distribution over all the distributions that are consistent with the vector of371

firing rates r. Nevertheless, to simplify computations, an algorithm is suggested to approximate MAP estimate from the372

distribution over the distributions. The model was later renamed to "distributional population codes" in [Zemel and373

Dayan, 1998], where it was used to explain the single-cell recordings and behavioral data in a multiple-motion task.374

The framework was subsequently extended to "doubly distributional population codes" to capture both uncertainty and375

multiplicity simultaneously [Sahani and Dayan, 2003].376
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Figure 4: Distributed Distributional Codes (DDC): representation and decoding. (a) Five DDC encoding functions are
assumed to represent the distribution. In the absence of uncertainty, e.g. p(z|o) = δ(z− zo), the values of the encoding
functions at zo represent the deterministic value of the latent variable (filled circles and the bar plot in b). (c) Under
uncertainty, we illustrate the exact posterior distribution, p(z|o), as a mixture of two Gaussian distributions (gray). The
DDC representation is based on the expected values of encoding functions under the full posterior distribution (d). The
approximate posterior, q(z|o), that is decoded from the representation depends on additional decoding choices, two of
which are shown here: Dashed black line: the maximum entropy distribution derived from the DDC values in d. Solid
black line: the sparsity-regularized decoding of the belief.

It should be noted that prior to the linear encoding approach in [Zemel et al., 1998], a linear decoding had been suggested377

in [Anderson, 1994, Anderson and Van Essen, 1994]. Instead of defining the encoding process, one can assume that378

the distributional belief p(z|o) is a weighted sum of some basis functions ψi(z). Therefore, the distributional belief379

can be computed through p(z|o) =
∑
i ρiψi(z), where ρi is the neuronal activity used to decode the distribution.380

In this approach, which is similar to kernel density estimation, the basis functions do not have direct relations with381

the tuning functions of the neurons. To find the decoding coefficients, ρi, different methods have been suggested382

including projection methods and EM algorithms. In the projection method, coefficients are computed by projecting the383

probability distribution on the basis functions, leading to a representation for ρi which is similar to the encoding in384

[Zemel et al., 1998].385

How it works: Probabilistic computation and inference frequently involves deriving the expected value of some
function f(z). One basic approach is to calculate Ep(z|o)[f(z)] is to decode the posterior distribution given the DDC
values r, find an estimate of p(z|o), denoted by q(z|o), and then compute the expected value through Eq(z|o)[f(z)].
However, there is a simpler way. The primary characteristic of the DDC framework is its ability to compute expected
values without needing to decode the probability distributions explicitly. Let f(z) =

∑
i ciφi(z) represent a linear

expansion of f(z) with the encoding functions as the basis set. Then

Ep(z|o)[f(z)] =
∑
i

ciEp(z|o)[φi(z)] (4)

=
∑
i

ciri (5)

Therefore, within the DDC framework, the expected value of an arbitrary function can be estimated by a weighted386

sum of the DDC values, significantly facilitating inference and learning procedures [Vértes and Sahani, 2018, 2019,387

Wenliang and Sahani, 2020].388

What is o? In the DDC framework, the observation o denotes the set of signals provided by the sensory system;389

alternatively, it signifies the output of the preceding processing stages that act as the "observation" for the subsequent390

layer. For example, in the early stages of visual processing, the retinal activity constructs the observation o, and is391
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employed for inferring the DDC of posterior distribution over visual features, such as orientation and color. These392

inferred visual features can then be considered as "observations" in a generative model for higher-order processing,393

enabling another level of inference, like assessing the value of a shape in a decision-making task. It is worth considering394

that in theory, one can envision a scenario where all inferences occur within an extensive hierarchical generative model.395

The sole observations in this context are the sensory signals, while the remaining variables constitute the latent variables396

requiring inference. Nevertheless, it appears that in order to maintain computational feasibility, the brain might employ397

separate generative models and propagate essential distributional beliefs among them.398

What is z? The latent variable z encompasses any "unobserved" variable in the generative model that needs to be399

inferred. Within DDC, each latent variable is associated with a set of encoding functions whose expectations, with400

respect to the posterior distribution, determine the firing rates of the corresponding neurons. Latent variables in V1, for401

instance, may be linked to the orientation of image patches, whereas in CA1, they might denote the spatial location. The402

DDC encoding functions would then encode orientation in V1 and location in CA1. It is important to highlight that the403

concepts of orientation, location, and the like, as perceived by the observer, may not align precisely with the encoded404

information within the latent variables. The interpretation of the latent variables and establishing their connections with405

features in the external world poses a significant challenge. It is not yet fully understood how the brain dissects the406

stimuli to implant efficient features into the latent variables, and how an external observer can decrypt these features.407

What is r? The neuronal firing rate is primarily defined by the expected value of the neuron’s encoding function with
respect to the posterior distribution. However, there are nuances that give rise to diverse extensions of this definition.
One might incorporate a noise model to account for the variability in the firing rate that is unexplainable by the posterior
dynamics. For example, it can be a simple additive white Gaussian noise ε,

r = Ep(z|o)[φ(z)] + ε, (6)

or alternatively, the neuronal noise may manifest as Poisson noise, with an average given by E[r] = Ep(z|o)[φ(z)].408

The other extension deals with the mapping between p(z|o) and r which can be non-linear,

r = h
(
Ep(z|o)[φ(z)]

)
(7)

where h is a non-linear function. Indeed, the combination of a non-linear mapping and a noise model would be a409

feasible approach for further extension.410

What are p and q? In a generative model with observation o and the latent variable z, conducting exact inference
yields the distributional belief p(z|o). The DDC framework operates under the assumption that the brain’s access is
restricted to the DDC values r, with the flexibility for the approximate posterior q(z) to be any probability distribution
consistent with these DDC values. To decode the probability distribution, one needs to find the probability distributions
q(z) that satisfy the constraints ri =

∫
q(z)φi(z)dz, for i = 1, 2, ...,K. This problem is known as generalized moment

problem and have been studied extensively, initially for polynomial moments and later for generalized moments
[Schmüdgen et al., 2017, Kemperman, 1968]. A given DDC vector r can correspond to none, one, or more than one
distribution. When multiple distributions are associated with r, various optimization functionals can be utilized to find
the "optimal" posterior q∗(z|o). For a given utility functional U , the optimal posterior is derived from

q∗(z|o) = argmax
q

U(q) subject to: (8)∫
q(z)φi(z)dz = ri, for i ∈ {1, 2, ...,K} (9)∫
q(z)dz = 1 (10)

q(z) ≥ 0 (11)

A well-known choice for the utility functional is the entropy of the probability distribution, U(q) = −
∫
z
q(z) log q(z)dz.

The maximum entropy solution of the generalized moment problem is an exponential family distribution [Wainwright
and Jordan, 2008].

q(z|o) = exp

(
K∑
i=1

φi(z)ηi −A(η1, η2, ..., ηK)

)
, (12)

where A(.) is the log-partition function. This approach yields the probability distribution with the highest uncertainty411

while satisfying the expectation constraints imposed by the DDC values. The natural parameters, η, correspond to the412

Lagrange multipliers used for solving the optimization problem.413
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Alternative utility functionals include measures such as the sparsity of distribution in a given basis, the smoothness of414

the distribution, and others. In Fig. 4, the maximum entropy distribution and sparsity-regularized distribution have been415

derived for the given DDC values. Another proposition involves considering the set of distributions q(z|o) that satisfy416

the expectation constraints and deriving a posterior distribution over all these distributions [Zemel et al., 1998]. In fact,417

by assuming a sparsity measure for optimization and additive noise for the DDC values, one can use an empirical Bayes418

method [Ji et al., 2008] to derive the posterior distribution over all the beliefs that satisfy the DDC values [Salmasi and419

Sahani, 2022].420

As previously mentioned, DDC endeavors to bypass the decoding of the distributions q(z|o)—instead, it transforms421

probabilistic inferences/computations into the determination of expected values of certain functions. These expectations422

are computed straightforwardly through weighted sums of the DDC values.423

Mapping between q and r: Any approximate posterior distribution q(z|o) should satisfy the generalized moment
constraints

∫
q(z)φi(z)dz = ri, for i = 1, 2, ...,K, though the noise variance will allow some deviations from equality.

The mapping from r to q is related to the generalized moment problem that was discussed in the previous part. To
derive the maximum entropy distribution for the given DDC r, the natural parameters η(r) are calculated from the set
of non-linear equations,∫

z

φi(z) exp

(
K∑
i=1

φi(z)ηi −A(η1, η2, ..., ηK)

)
dz = ri, i ∈ {1, 2, ....,K} (13)

where

A(η1, η2, ..., ηK) = log

∫
exp

(
K∑
i=1

φi(z)ηi

)
dz, (14)

and a closed-form distribution is obtained for q(z|o). However, as stated earlier, maximum entropy is not the sole424

approach to derive q(z|o) from r.425

What is ṙ: Various algorithms have been suggested for conducting inference and learning in the DDC framework.426

Helmholtz machines propose an elegant method for joint inference and learning—the wake-sleep algorithm iteratively427

refines the generative model and recognition network of the Helmholtz machine, and concurrently, learns the generative428

model of the world and acquires the capacity to infer the latent variables.[Dayan et al., 1995].429

DDC has been integrated into the Helmholtz machine to provide a biologically plausible mechanism for inference430

and learning [Vértes and Sahani, 2018]. It is assumed that the generative model belongs to deep exponential family431

models—the conditional probabilities and priors are exponential families each characterized by specific sufficient432

statistics. The recognition network has a similar hierarchical structure and each layer is associated with a set of DDC433

encoding functions. The recognition network performs inference by mapping the observations to the DDC values of434

each layer, and the recognition outputs are interpreted as representing a posterior distribution with maximum entropy,435

meaning that the approximate posterior corresponds to an exponential family.436

During the sleep phase, the generative model is used to generate samples of latent variables and sensory observations437

(dream sequence). The goal of the recognition network is to minimize the Kullback-Leibler divergence between the438

deep exponential family distribution of the generative model and the approximate maximum entropy distribution439

of the recognition network. Since both probability distributions are from exponential family, the parameters of the440

recognition network are modified to minimize the difference between the DDC values of the recognition network and441

the expectations of the sufficient statistics of the generative model.442

During the wake phase, sensory observations are collected and utilized by the recognition network for inferring the443

DDC values of the posterior distributions over the latent variables. Subsequently, the sensory observations and the DDC444

values are used to update the parameters of the generative model in order to increase the variational free energy. It is445

shown that the gradient of the free energy can be derived by calculating the expected value of some functions of the446

latent variables. This means that by using a linear expansion for these functions, the gradient of free energy can be447

approximated by weighted sums of the DDC values. The remaining issue is the learning of expansion coefficient that448

can be conducted using the generated samples in the sleep phase [Vértes and Sahani, 2018].449

What is q̇: The dynamics of the approximate posterior q is intricately linked to the dynamic evolution of the DDC450

values r. In the Helmholtz machine, for example, the sensory observations and the current weights of the recognition451

network determine the DDC values of each layer. By adopting the maximum entropy distribution, the conditional452

distribution of each layer is mapped to an exponential family, whose sufficient statistics are the DDC encoding functions453
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of that layer and the natural parameters are calculated by the given DDC values. It is worth emphasizing that in the454

realm of DDC computations, there is a possibility of encountering DDC values that lack feasibility, meaning there is no455

corresponding distribution for them. Nevertheless, with a rich set of encoding functions, the probabilistic computations456

can still maintain a high degree of precision.457

What is ṗ: Depending on the generative model employed, various algorithms can be used for learning the model’s458

parameters. In the case of a deep exponential family model, the parameters of the generative model can be learnt by459

the wake-sleep algorithm, as discussed previously [Vértes and Sahani, 2018]. The natural parameters of each layer in460

the deep exponential family are calculated by a parametrized function of the parent variable. The parameters of these461

functions are updated by calculating the gradient of the variational free energy. The generative model is affected both in462

wake and sleep phases. The variational free energy is calculated through the expected values of some linear functions of463

sufficient statistics. The expectations are calculated by the weighted sums of the DDC values during the wake phase,464

and the weights of the linear functions (expansion coefficients) are learnt through the samples of the generative model465

in the course of the sleep phase.466

4.3 Neural sampling467

Key idea: A probability distribution can be approximated by a collection of samples from it, rather than by its468

parameters. The key idea underlying ‘neural sampling’ is that the neural activity in small time bins can be interpreted as469

one or more samples from the brain’s posterior, and that over time or space, the distribution of neural activity reflects470

the posterior [Hoyer and Hyvärinen, 2003, Fiser et al., 2010]. To implement this, stochastic recurrent dynamics explore471

the state space of latent variables, occupying states in proportion to their posterior probability. Given these samples, the472

brain can directly estimate expectations of any function of the latent variables, which is helpful for choosing actions.473

For example, expectations can compute the posterior mean to generate a single estimate, a posterior variance to quantify474

uncertainty, or expected reward to compare states and actions.475

What are p and q? Samples may be drawn either from the exact posterior p, or from an approximate posterior476

distribution, q(z|o), as in stochastic variational inference [Savin et al., 2011, Hoffman et al., 2013].477

What is r? Neural sampling dynamics come in three main flavors, differing by which aspect of neural activity encodes478

the samples: (1) membrane potential (continuous z)[Orbán et al., 2016, Bányai et al., 2019], (2) spike/no spike (binary479

z) [Buesing et al., 2011, Pecevski et al., 2011, Haefner et al., 2016, Shivkumar et al., 2018], or (3) firing rate (continuous480

latent z) [Hoyer and Hyvärinen, 2003, Haefner et al., 2016, Echeveste et al., 2020].481

What is the mapping between q and r? Most proposals assume a one-to-one map between latent dimensions and482

responses of individual neurons, although the two can also be related less directly via a linear map, M [Savin and483

Deneve, 2014].484

q(z|o) = 1

n

n∑
k=1

δ(Mr(k) − z) (15)

where n is the number of samples.485

What is q̇? Most neural sampling proposals consider static inference problems, in which a posterior is inferred for a486

given stimulus. On that (shortest) timescale, q̇ simply reflects the additional samples generated over time, successively487

refining the posterior approximation. The sampling idea can be expanded to time-varying inference problems in which488

the posterior evolves over time on the time scale of the stimulus dynamics, for instance by neural dynamics analogue of489

particle filtering [Lee and Mumford, 2003, Kutschireiter and Pfister, 2018].490

What is z? Prior work on neural sampling has primarily focused on generative models of natural images, including491

linear Gaussian models and sparse variants [Olshausen and Field, 1996, 1997, Hoyer and Hyvärinen, 2003, Haefner492

et al., 2016, Shivkumar et al., 2018] or Gaussian scale mixtures [Schwartz and Simoncelli, 2001, Wainwright et al.,493

2002, Orbán et al., 2016, Bányai et al., 2019]. Other examples include a hierarchical extensions of these [Haefner et al.,494

2016, Bányai et al., 2019, Csikor et al., 2023], a sparse linear Poisson model of olfactory inputs [Grabska-Barwinska495

et al., 2013, Grabska-Barwińska et al., 2017], or a probabilistic formalization of memory retrieval where the latents are496

possible items retrieved from memory [Savin et al., 2011, 2014]. In these works, latents are either continuous [Hoyer497

and Hyvärinen, 2003, Grabska-Barwinska et al., 2013, Savin and Deneve, 2014, Orbán et al., 2016, Haefner et al., 2016,498

Bányai et al., 2019], e.g. representing the intensity of an odorant or the amplitude of a Gabor feature in the visual input,499

or discrete [Buesing et al., 2011, Savin et al., 2011, 2014, Haefner et al., 2016, Shivkumar et al., 2018], e.g. binary500

variables for different task contexts.501

15



A PREPRINT - JULY 27, 2024

co
nt

in
uo

us
 la

te
nt

s
bi

na
ry

 la
te

nt
s

biophysical system computational interpretation
what is r? r to q map what is q? what is p(z|o)?

p(z)q(z)

zr1

rn

...
...

z = T(r)

z = T(r)

r2

z2

z2

z1

z (1)

z1

z2

z1

r1

rn

r2

0
1

...

0

1
0

...

1

0
0

...

0

counting
window

counting
window

00
...0

11
...1

00
...0

11
...1

o

Figure 5: Illustration of neural sampling codes using both continuous and binary latents.

What is o? The nature of the relevant observations depends on the generative model. They could be a retinal image502

or the whitened output of retina in most vision related studies, receptor activity in olfaction [Grabska-Barwinska et al.,503

2013], spikes in other brain regions [Beck et al., 2012], strength of synapses storing information about past experience504

in [Savin et al., 2011, 2014].505

How it works: The details of the circuits implementing neural sampling can differ across proposals, but they
generally take the form of stochastic dynamics that map a current sample into a new one, via a transition probability. For
continuous latent variables, the simplest example is Langevin sampling where the dynamics perform gradient descent
on an ‘energy’ (given by the negative log posterior), with additive gaussian noise:

z(t+1) = z(t) + α∇ log p(z|o) + ε(t) (16)

where ν determines the step size and ε is zero-mean Gaussian noise whose variance only depends on α (Figure 5A).506

Another classic example algorithm is Gibbs sampling in which new samples are drawn one dimension of z at a time:507

z
(t+1)
k ∼ p(zk|z¬k = z

(t)
¬k) where z

(t)
¬k) denotes the last sample, including all dimensions of z other than the kth508

(Figure 5B). Compellingly, the circuits resulting from Gibbs sampling only rely on local connectivity [Buesing et al.,509

2011, Haefner et al., 2016], matching classic anatomical results [Felleman and Van Essen, 1991]. The accuracy of510

sampling-based approximate inference critically depends on time, which makes sampling speed a key consideration511

when assessing the computational efficiency of different sampling schemes. Many of the recent theoretical efforts have512

been motivated by the conjecture that sampling in the brain is likely accelerated compared to classic sampling algorithms513

like Gibbs sampling, for instance through the use of balanced amplification [Hennequin et al., 2014, Echeveste et al.,514

2020], network oscillations [Savin et al., 2014, Aitchison and Lengyel, 2016], or other biophysical features [Buesing515

et al., 2011].516

4.4 Formal connections between the different proposals517

DDC and PPC are both categorized as parametric schemes, however, DDC is defined as an encoding framework, while518

PPC is primarily introduced as a decoding scheme [Lange et al., 2023]. Within the DDC framework, the posterior519

distribution p(z|o) is "encoded" by the expected values of the DDC encoding functions, determining the neuronal520

activity r. In contrast, PPCs depart from defining the encoding scheme, and instead, assume that the logarithm of the521
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posterior distribution can be approximately "decoded" through a weighted sum of a set of basis functions, where the522

weights correspond to the neuronal firing rates r. This decoding-based scheme can be compared to the linear decoding523

approach in Anderson [1994], Anderson and Van Essen [1994], where it is assumed that the posterior distribution can be524

approximated through a weighted sum of given basis functions (similar to kernel density estimation). The distinguishing525

factor in PPC is the application of linear decoding to the "logarithm" of the probability distribution.526

By narrowing our scope to a specific decoding approach for DDC, namely the maximum-entropy decoding, we can527

strengthen the connection between PPC and DDCs. In this case, the approximate posteriors in both DDC and PPC528

are members of the exponential family—PPC represents the natural parameters of the exponential family by a linear529

mapping of neural activity, while DDC encodes the expectations of sufficient statistics (mean parameters). Therefore,530

under the premise of maximum-entropy decoding, PPCs and DDCs can be transformed into one another through the531

one-to-one correspondence between natural parameters and mean parameters in exponential family distributions, though532

the conversion can be computationally expensive.533

For the remainder of this subsection, we will assume that the underlying posterior (or approximate posterior) is a534

member of the exponential family of distributions with finite dimensional sufficient statistic T(z) and natural parameters535

η. The distinction is that PPCs represent the natural parameters η linearly in neural activity, whereas DDCs represent536

the expectation parameters µ linearly in neural activity. Because these two types of parameters can be uniquely related537

to each other, PPCs and DDCs are both equally expressive and can, in principle, be mapped onto each other. In fact, this538

conversion is a primary goal of many inference problems [Wainwright and Jordan, 2008], such as inferring marginals539

(directly related to expectation parameters) from a joint distribution specified by natural parameters. In practice, however,540

exact conversion is often difficult or even intractable, so probabilistic reasoning requires sophisticated approximation541

schemes or recognition networks that learn to approximate the relationship between µT and η. Curiously, the principle542

means by which the relationship between natural parameters and expectations are discovered is via generating samples543

conditioned on the natural parameters and then using those samples to approximate the expectations.544

It is worth noting, however, that many inference algorithms function by iteratively updating expectations and natural
parameters, suggesting that both DDCs and PPCs can interact fruitfully to perform fundamental computations. For
example, consider belief updating using variational inference with a factorized posterior, q(z1, z2) = q(z1|η1)q(z2|η2).
This algorithm uses iterative posterior updates that obey

η1 ·T(z1) = 〈log p(z1, z2)〉q(z2|η2) + const

where p(z1, z2) is the target posterior to be approximated by q. When T(z) is expressed as a set of orthonormal basis
functions, the joint distribution of observations and latents can be written as a linear combination of outer products and
thus

η1i =
∑
j

aij 〈Tj(z2)〉

η2i =
∑
j

bij 〈Tj(z1)〉

A linear PPC assumes that the left hand sides of the above equations are linear in neural activity while a DDC assumes545

that the expectations on the right hand side are linear in neural activity. Thus, in this setting, a linear PPC representation546

for q(z1) corresponds to a DDC representation of q(z2) and vice versa since547

MPPC
1 rPPC

1 = AMDDC
2 rDDC

2

MPPC
2 rPPC

2 = BMDDC
1 rDDC

1

More generally it can be shown that in a multilayer generative model implemented using a DDC, a PPC for latent548

variables in layer j, can be constructed from a quadratic combination of neural activity representing a DDC in layers549

j − 1 and j + 1. Indeed, the same quadratic combination of DDC representations is what drives learning in the DDC550

framework precisely because the quantities being learned parameters that are linearly related to natural parameters.551

As a result, learning signals in a network in which neural activity forms a DDC, the learning signals form are PPC552

representations of the corresponding posteriors.553

Because they are both based upon exponential family distributions and associated approximate inference schemes,554

the difference between PPCs and DDCs comes down to the empirical question of whether the brain uses activity to555

linearly represent natural parameters (PPCs) or expectation parameters (DDCs). Computationally, these representational556

schemes differ in computational convienence and efficiency. For example, the product rule (e.g. evidence integration) is557

linear in log-probability or in natural parameters, which makes them easy to implement for linear PPCs, but is nonlinear558
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in probability. Similarly, marginalization is a linear operation on probability and hence also linear for expectations559

so this operation is ’easy’ for a DDC while the product rule requires a quadratic operation. Of course, this argument560

assumes the linear operations are in some sense preferred by neural circuits.561

Inference generally requires both computations, and previous work has shown that a network capable of implementing a562

quadratic non-linearity and divisive normalization is sufficiently computationally expressive to implement both evidence563

integration and marginalization with a PPC [Beck et al., 2011]. In the Kalman filter, for example, all of the complexity564

of the standard equations are explained simply by the need to switch back and forth between a natural parameter565

representation to use the product rule of probability when updating posteriors with new evidence, and an expectation566

parameter representation to use the sum rule of probability when marginalizing over states. This switching suggests that,567

in the brain, one might expect to find signatures of both PPCs and DDCs at different stages or in different functional568

subpopulations.569

Similar links exist between sampling and DDCs. For instance, for generative models based upon exponential family570

distributions, NSCs require the evaluation of the sufficient statistic T(z) or its gradient for each sample z. Since a571

DDCs is present when the average of this quantity is available, a simple average of neural activity associated with an572

NSC leads to a DDC.573

4.4.1 Special cases and alternative proposals574

It is worth noting that the Free Energy Principle [Friston, 2010] is a special case of a parametric code in which575

neural activity represents the parameters of q. In its instantiation as predictive coding, it further assumes a mean-field576

approximation to the full posterior, i.e. q(z) =
∏
i qi(zi) in which each of the q(zi) is Gaussian [Gershman, 2019].577

Such a representation is extremely limited in its expressive power compared to more general PPCs, DDCs, or NSCs,578

since it cannot represent any dependencies in the posterior p due the factorization.579

Furthermore, PPCs, DDCs, and NSCs are not the only possibilities for probabilistic representations. For example,580

recent work in distributional reinforcement learning has proposed that the brain may use expectile codes [Dabney et al.,581

2020]. Such representations could themselves be constructed based on other probabilistic codes, such as sampling582

[Rullán Buxó and Savin, 2021].583

It is also possible to interpolate between the model classes. For example, it is possible to sample the parameters of a584

distribution, rather than sampling the latent variables directly, like a sampled mixture of PPCs or DDCs [Lange et al.,585

2022] (Fig. 3d–e, Fig. 2c).586

4.5 Case study: cue integration587

Figure 7 shows a simple case study we will use to showcase computations needed for all three classes of theories. Here588

we use a probabilistic graphical model in which one top-level variable z3 affects two lower-level latents z1 and z2, each589

generating its own observations o1 and o2 (Figure 7). We assume that tasks based on this model depend only on single590

latent variables, so the goal is to calculate marginal probabilities conditioned on all of the observations. In other words,591

the goal for inference in this model is to compute a representation of the high-level marginal posterior p(z3|o1,o2), as592

well as the low-level posterior p(z1|o1,o2) that accounts for both direct evidence from o1 → z1 and indirect evidence593

o2 → z1. Inference in this model is a nice case study because it requires use of both the product rule of probability,594

when combining the direct and indirect evidence, and the sum rule, when marginalizing over latent variables.595

4.5.1 PPC596

Integrating independent cues is straightforward in PPCs: this operation corresponds to the product rule for probabilities,597

so if neural activity is proportional to log probability, this means simply adding neural activity. We could do this directly598

if we had separate PPCs r(3|1) and r(3|2) for distributions over the higher-level variable z3, corresponding to indirect599

evidence q(z3|o1) and q(z3|o2). Then our final PPC for q(z3|o1,o2) would be simply r(3) = Ar(3|1) + Br(3|2) for600

some matrices A and B.601

However, our illustrative goal with this example inference problem is to define how representations would be combined602

along the representations of z1 and z2, which requires a transformation, rather than simply assuming a population code603

directly for the higher-level variable. In this case we must describe a marginalization over the nuisance variables that604

distinguish z1 and z2 from z3.605

Marginalizing is more difficult in PPCs, because it is nonlinear in neural activity. Nonetheless, past work has shown that606

for Gaussian posteriors, quadratic nonlinearities with divisive normalization provide one good transformation [Beck607
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et al., 2011], where quadratic operations and divisive normalization are both biologically plausible and well-described608

neural operations.609

Putting these ideas together, the computation of q(z3|o1,o2) for PPCs would start with populations r(1) and r(2), each610

encoding a posterior q(zk|ok) over the lowel-level variables given the corresponding evidence. A third higher-level611

population r(3) would then be driven by these lower ones as612

r
(3)
` =

r(1)A`r(1) + r(2)B`r(2)

c` + a`r(1) + b`r(2)
(17)

where tensors A`ij and B`ij specify how each product of inputs r(k)i and r(k)j are weighted by neuron r(3)` , and vectors a`i613

and b`i specify how these inputs affect the divisive normalization. All of these weights are specified by the representation614

of the input population [Beck et al., 2011] and the coupling strength between the z.615

This describes the information flow from inputs to the representation of q(z3|o1,o2). To condition the lower-level616

variable on both observations, a PPC representation would repeat this process to update the population r(1), once again617

using quadratic operations and divisive normalization. This iterative updating defines a message-passing algorithm that618

converges to an equilibrium representation which reparameterizes the sufficient statistics of the joint distribution in619

terms of sufficient statistics for its marginals [Wainwright et al., 2003]. Since the neural activity in a PPC represents620

these statistics, the relevant dimensions of the neural activity also converges [Vasudeva Raju and Pitkow, 2016].621

4.5.2 DDC622

Unlike marginalization and chain inference, which can be easily implemented in the DDC framework, the cue623

combination needs elaborate computations [Sahani, 2021]. Various DDC-based methods have been proposed for624

implementing cue integration; here, we present a proportionality relationship for the DDC of the posterior distribution625

which is derived through the expansion technique described in 4.2. Let r(1)i =
∫
p(z1|o1)φ(1)i (z1)dz1, r(2)j =626 ∫

p(z2|o2)φ(2)j (z2)dz2, and r(3)k =
∫
p(z3|o1, o2)φ(3)k (z3)dz3 be the DDC values of the posterior distributions p(z1|o1),627

p(z2|o2), and p(z3|o1, o2), respectively. In DDC-based cue combination, ideally, we would like to compute the628

DDC values of the posterior p(z3|o1, o2), i.e. r
(3)
k , using the DDC values r(1)i and r

(2)
j . It can be shown that629

r
(3)
k ∝

∫
fk(z1, z2)p(z1|o1)p(z2|o2)dz1dz2, where fk(z1, z2) =

∫ p(z3)p(z1|z3)p(z2|z3)
p(z1)p(z2)

φ
(3)
k (z3)dz3. By approximating630

fk(z1, z2) through a bilinear expansion, fk(z1, z2) ≈
∑
i,j ci,j,kφ

(1)
i (z1)φ

(2)
j (z2), we can find the proportionality631

relationship r(3)k ∝
∑
i,j ci,j,kr

(1)
i r

(2)
j . Using a similar approach, we derive proportionality relationships for the632

marginal DDC values of z1 and z2. Let r̂(1)k =
∫
p(z1|o1, o2)φ(1)k (z1)dz1 denote the DDC of the marginal distribution633

p(z1|o1, o2). We can show that r̂(1)k ∝
∑
i,j ĉi,j,kr

(1)
i r

(2)
j , where ĉi,j,k are the expansion coefficients of gk(z1, z2) =634

φ
(1)
k (z1)

∫ p(z3)p(z1|z3)p(z2|z3)
p(z1)p(z2)

dz3.635

Note: In this implementation, the bilinear expansion is a challenging task. Moreover, the DDC values of p(z3|o1, o2)636

are merely proportional to the weighted sum of the product of DDC values r(1) and r(2), and the normalization factor is637

not easy to calculate. To deal with these limitations, other methods have been suggested for inference and learning638

in hierarchical models, such as DDC-Helmholtz machine with wake-sleep algorithm [Vértes and Sahani, 2018] (see639

section 4.2 for more information).640

4.5.3 Neural sampling641

Simple Langevin sampling from the posterior over latents z given observations o takes the form of stochastic dynamics642

of the form:643

ż = −∇ log p(z|o) + dε (18)

where dε is Brownian noise. Given the factorization of the posterior p(z|o) =644
1
Z p(o1|z1)p(o2|z2)p(z1|z3)p(z2|z3)P (z3), with Z denoting the normalizing constant, the logarithm trans-645

lates into dynamics that additively combine the contribution of each element. Assuming a one-to-one map between646

neurons and latent variables647

ż1 = − log p(o1|z1)− log p(z1|z3)→ ṙ1 = f1(o1) + g1(r3) (19)
ż2 = − log p(o2|z2)− log p(z2|z3)→ ṙ2 = f2(o2) + g2(r3) (20)
ż3 = − log p(z1|z3)− log p(z2|z3)− log(r3)→ ṙ3 = g3(r1, r2, r3) (21)
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These dynamics involve feedforward inputs f1(·) to the neurons/subpopulations r1 and r2, respectively, with recurrent648

interactions gi(·) structured by the information flow described in Fig. 7b. The exact form of these functions depends on649

the specifics of the graphical model, e.g. in the linear gaussian case feedforward input effects would be linear and the650

recurrent interactions would implement a stochastic linear dynamical system. More broadly, it is important to note that651

within the sampling framework inference is not naturally thought of as a transformation of representations but rather652

as a collection of recurrently interacting dynamical systems nodes which jointly represent one posterior distribution;653

marginals of that posteriors available by reading out information from single nodes in this system.654

5 Interpretation of existing data655

Distinguishing between different coding schemes using empirical data – both behavioral and neurophysiological – is656

complicated by the fact that the predictions generally depend not only on the coding scheme that relates a posterior657

probability to a neural response, but also on the generative model, p(o, z), that is being used by a Bayesian brain. While658

it is possible to empirically evaluate such ‘complete models’, consisting of both an assumption about the p(o, z) and659

the coding scheme, it is currently unclear whether there are empirical signatures that can distinguish between coding660

schemes irrespective of the assumed generative model. That is, prediction failures associated with any given coding661

scheme can be attributed to incorrect choice of generative model or, equivalently, incorrect assumptions about either662

the identity of the latent variables represented by a given population. In the next sections we will elucidate this fact663

by reviewing classic empirical observations and summarizing how they can be explained assuming different coding664

schemes, often involving different assumptions about the underlying generative models.665

It is important to note that these theories only put constraints on, or make predictions for, a subset of the observable666

biophysical properties. For example, if the activity of only a subset of neurons represent posteriors, with other neurons667

performing auxiliary computations (e.g. as in [Pecevski et al., 2011, Aitchison and Lengyel, 2016, Echeveste et al.,668

2020]), then this will pose the extra empirical challenge of identifying those neurons. Similarly, if e.g. parameters of669

distributions represent low-dimensional projections of high dimensional neural activity, then neural activity in directions670

that are orthogonal to those projections will not be constrained. In general, this caveat is a special case of the general671

neural coding question that asks what aspect of neural activity is computationally relevant, often applied contrasting672

membrane potentials with spike times or firing rates [Dayan and Abbott, 2005].673

The degeneracy that arises from the possibility of the different model components of probabilistic computations to674

trade off against each other suggests deeper theoretical work into ‘equivalence classes’ of different models that may675

all be compatible with the same biophysical system, yet involve different generative model – neural coding pairs, or676

pertaining to different aspects of neural activity (also see [Shivkumar et al., 2018, Lange et al., 2023]).677

5.1 Tuning functions and their modulations678

5.1.1 Tuning to a single stimulus dimension679

When the average response of a neuron changes as a function of some variable, s, it is said to be ‘tuned’ to s. Typically,680

the considered variables are experimenter-defined, such as the orientation of a visual image on the retina, or frequency of681

an auditory stimulus. In the context of probabilistic inference, tuning arises when the neuronal response represents the682

posterior over latent variables z that depends on s, and that dependency changes the average response. In general, the683

tuning function is the consequence of both the coding scheme (how the response depends on the represented posterior),684

and how the internal variable z depends on the experimenter chosen variable s.685

Each of these coding schemes predicts that neurons are tuned to the represented latents, z. If s parameterizes a subspace686

of z then some of the neurons representing p(z) will also be tuned to s. Moreover, if the latents are a deterministic687

function of s, i.e. z = f(s), then not only will the population of neurons be tuned to both z and s, but also the form of688

the probabilistic neural code (PPC/DDC/NSC) for z will be inherited by s. This suggests that complete knowledge of689

the relationship between represented latents z and laboratory variables s is not required for detecting the coding scheme.690

5.1.2 Scaling of tuning curves with other stimulus parameters that influence uncertainty691

Empirical observation: Two of the most-studied tuning curves, those to orientation in area V1, and those to motion692

direction in area MT, have been shown to be ‘invariant’ to the key stimulus aspects believed to influence the brain’s693

uncertainty about the respective tuning variable: image contrast for orientation, and motion coherence for motion694

direction []. Invariant in this context means that the shape of the tuning curve is approximately invariant, and that695

changes in contrast and coherence have an approximately multiplicative effect on their magnitude across the entire696

stimulus range. From the perspective that sensory neurons ‘represent’ particular aspects of the input, this feature of the697
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data appears paradoxical: while it is plausible that the neurons whose preferred stimulus is closest to the correct one698

would increase their firing with increasing certainty about the correct value, it is less clear why the same would be true699

for neurons representing stimulus values that have become less likely with increasing contrast or motion coherence [].700

General probabilistic interpretation: In general, the shape and scaling of tuning curves with respect to some701

variable s will depend on the generative model defining the posterior over z, and the neural encoding scheme.702

PPC interpretation: When visual contrast simply scales neural tuning over another feature such as orientation or703

motion direction, the PPC’s logarithmic relationship between activity and posterior means that the posterior becomes704

narrower as the tuning amplitude rises. No study to date has investigated the tuning curves implied for a PPC with a705

generative model for e.g. natural images.706

DDC interpretation: One of the key features of the DDC representation is the modulation of population sparsity by707

uncertainty. When the variance (uncertainty) of the posterior distribution increases, more DDC encoding functions708

overlap with the distribution and the sparsity of activity reduces. In other words, the diversity of neuronal activity709

increases with uncertainty (Fig.8) [Ujfalussy and Orbán, 2022].710

It is also important to highlight the distinction between the DDC encoding functions and tuning functions. To compute711

the tuning function of a neuron, the experimenter sweeps over the parameter of interest s (e.g. the orientation of the712

grating) and measures the firing rate of the neuron. The value of the tuning function of a DDC neuron at s is equal713

to the expected value of the DDC encoding function φ(z) with respect to the posterior distribution p(z|o), where the714

sensory observation o is a function of s.715

The DDC framework suggests that decreasing the uncertainty of the posterior distribution should narrow the tuning716

functions of individual neurons. However, it has been observed that in V1, the tuning functions over the orientation717

are contrast-invariant, and decreasing the contrast does not broaden the tuning. Nevertheless, we should note that the718

generative model and the latent variables over which the DDC is defined play a critical role in this analysis; for example719

a multiplicative contrast term in the generative model results in a different posterior over the latent variables which720

correspond to the coefficients of the Gabor basis functions. This area warrants a more comprehensive investigation, and721

it is of great importance to study the impact of different generative models (e.g. for natural images) on the modulation722

of tuning functions in the DDC framework.723

Sampling interpretation: Two principal generative models for natural images have been shown to produce tuning724

curves to orientation (as well as other dimensions like spatial frequency) that approximately scale with contrast:725

Gaussian scale-mixture models under the assumption that latents are represented by membrane potentials [Orbán726

et al., 2016], and linear Gaussian models with binary latents represented by spikes (Chattoraj et al. COSYNE 2016)727

[Shivkumar et al., 2018].728
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5.2 Neural variability729

Both membrane potentials and spiking responses of sensory neurons are known to be variable, even to repeated730

presentations to the same external stimulus [Tolhurst et al., 1983, de Ruyter van Steveninck et al., 1997]. Regardless of731

whether this variability is pure noise that is corrupting the underlying signal, or serves a computational function, it may732

be helpful for distinguishing between the different proposals described above.733

5.2.1 Empirical observations734

Neural variance Under natural conditions, neural responses are highly variable [Tolhurst et al., 1983]. This variability735

is different in different systems: in the retina, variability in spike counts is roughly as low as possible [Berry et al.,736

1997]; in the early auditory system, sound direction is computed using enormous and extremely reliable synapses737

[Joris and Trussell, 2018]; but in the cortex, variance is higher, and is observed to grow roughly proportional to the738

mean [Tolhurst et al., 1983, de Ruyter van Steveninck et al., 1997]. Indeed, the Fano factor, the ratio of the stimulus739

conditioned variance to the mean, is approximately one for most neurons in sensory cortical areas [Rieke et al., 1999].740

This relationship is maintained across a wide range of stimulus contrast levels (a proxy for input information in visual741

tasks) so that higher contrast is associated with higher firing rates and more variability. There also appears to be an742

increase in variability from lower level to higher level areas [Kara et al., 2000] with at least some of that increase743

accounted for by variability shared among neurons [Goris et al., 2014]. In the absence of a sensory stimulus neural744

variability is higher and exhibits a marked decrease at the time of stimulus stimulus onset [Churchland et al., 2010]745

modulated by contrast in early visual areas. These findings apply both to membrane potentials and firing rate [Finn746

et al., 2007, Savin and Deneve, 2014, Orbán et al., 2016, Hennequin et al., 2018].747

Neural covariance Neural responses often covary across neurons. The precise pattern of covariability may be748

important for their information content and computational function. Variation can be decomposed into different aspects:749

we expect some variation simply because the external input varies. This is often called ‘signal correlation’. Variability750

across repeated presentations of identical sensory inputs is called ‘noise correlations’ [Gawne and Richmond, 1993,751

Averbeck and Lee, 2006]. Here, the scare quotes to serve as a reminder that noise may be a misnomer as these752

fluctuations could be a result of useful computational mechanisms, fluctuations in attention, or context effects that were753

not held fixed during the experiment. Indeed, much of the interest in neural covariation focuses on noise correlations754

precisely because they reflect the internal computations and structure of the neural code rather than merely the external755

drive to a circuit [Savin and Deneve, 2014, Lange and Haefner, 2017, Ruff et al., 2018].756

Empirically, the noise covariance between two neurons typically grows with their mean responses, just like the variance757

for cortical neurons. The covariance reflects both the relationship between the neurons and scale of each neuron’s758

relationship. The correlation coefficient is one way to approximately isolate relationship between the neurons from the759

modulation of each neuron separately (although see [De La Rocha et al., 2007, Pitkow and Meister, 2012]). The pattern760

of correlations is often related to the neural tunings: similarly tuned neurons often exhibit greater correlations [Zohary761

et al., 1994, Averbeck and Lee, 2003, Nardin et al., 2023], although there is substantial diversity around this pattern.762

Furthemore, some studies report changes in correlation with the stimulus [Ohiorhenuan et al., 2010, Ponce-Alvarez763

et al., 2013], motor outputs [Dadarlat and Stryker, 2017], brain state [Ecker et al., 2014], and attention [Cohen and764

Maunsell, 2009].765

Noise covariance affects the information content that can be optimally extracted from a neuronal population [Zohary766

et al., 1994, Abbott and Dayan, 1999, Averbeck et al., 2006]. When signal covariance and noise covariance are similar,767

as observed in cortex, the resulting neural code is highly redundant with respect to the stimulus of interest[Moreno-Bote768

et al., 2014, Ecker et al., 2014]. While this redundancy appears limiting, it may serve a computational purpose (e.g.769

[Lange and Haefner, 2022, Nardin et al., 2023, Haimerl et al., 2023]).770

5.2.2 Interpretation771

There are two principal ways in which neural variability can arise among neural responses encoding a posterior belief:772

variability in the posterior itself, and a stochastic encoding of a fixed posterior [Lange and Haefner, 2022]. Since773

the latter is shared by all encoding schemes, we will discuss it first. Trial-by-trial variability in the posterior can774

arise even when the experimenter-controlled stimulus is kept constant as the result of external and internal sources of775

variability that can be mapped on to different aspects of computing a specific posterior: variability in the observation776

process (e.g. small eye-movements), variability in the likelihood computations, and variability in representation of777

prior expectations. Likelihoods and priors may be variable due to an approximate model of the outside world [Beck778

et al., 2012], approximate computations (e.g. implementations in stochastic neural circuits, or computations that only779

converge asymptotically).780
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Under some circumstances, e.g. in the context of learning a behavioral task, it has been possible to characterize the781

nature of the neural covariability due to the variability in the posterior, and to derive empirical predictions that match782

that reported in existing studies [Lange and Haefner, 2022].783

Interpretation of neural variability by PPCs Unlike sampling based codes, neural variability does not play a784

computational role in PPCs. However, PPCs do make strong predictions for the relationship between tuning curves and785

the covariance structures (Eq. ??) in the presence of nuisance parameters. While there are many ways to satisfy this786

relationship, one oft cited way is when Fano Factors are constant (but not necessarily one) for all values of the stimulus787

and nuisance parameters. As a result, the ubiquity of Fano factors near one across all stimulus conditions is often cited788

as evidence in favor of PPCs despite the fact that variable Fano factors can also be consistent with PPCs.789

Interpretation of neural variability by DDCs Like for PPCs, in DDC, variability does not serve a computational790

function but is considered noise that contaminates the signal present in the firing rates. As noted in 4.2, various791

noise models can be incorporated to model neural variability in the DDC framework, including additive noise (with792

independent or correlated components), and Poisson noise Zemel et al. [1998].793

Interpretation of neural variability by NSCs Neural variability is a necessary consequence of sampling-based794

inference: neural responses are variable since they are directly related to samples, which vary stochastically over time,795

with the amount of variability directly related to the uncertainty in the underlying beliefs.796

For models based on continuous latent variables, this view predicts a dissociation of mean and variance reflecting797

underlying beliefs that can change in both mean and uncertainty. Importantly, how both depend on external stimulus798

parameters depends critically on the assumed generative model, p(o|z). For instance, [Orbán et al., 2016, Festa et al.,799

2021] found that the stimulus-dependence of spiking responses and membrane potentials of V1 neurons were compatible800

with the assumption that membrane potentials represent samples from mixture variables in a Gaussian scale mixture801

model.802

For models based on binary latent variables, mean and variance are more tightly coupled since the variance of a binary803

variable is simply p(1− p) where p is the probability of the variable being 1. For small p, and summing over many804

independent samples, the distribution over the count is approximately Poisson, suggesting that individual spikes (and805

absences of spikes) may be interpretable as samples from distributions over binary z [Buesing et al., 2011, Shivkumar806

et al., 2018]. While the Fano Factor of independent binary samples is 1− p, i.e. sub-Poisson, samples that are generated807

using an MCMC algorithm often have positive autocorrelations. This will increase the variability of the number of808

spikes counted over an extended time window, making the resulting variability compatible with empirical observations809

from cortex independent of the specific nature of z and p(o|z).810

Neural sampling further predicts that whenever the posterior over different latent variables, p(z1, z2|o) is correlated, then811

this dependency in the posterior should directly be expressed in neural co-variability between the neurons representing812

z1 and z2, respectively. Starting from this insight, several studies have derived concrete predictions for noise correlations813

and choice correlations in the presence and absence of behavioral tasks [Haefner et al., 2016, Bondy et al., 2018, Bányai814

et al., 2019]. However, it is important to note that the trial-by-trial variability in the posterior (e.g. due to input noise and815

approximations as noted above) is closely related to the shape of the posterior itself. As a result, at least qualitatively,816

these predictions are shared by any coding scheme [?] and, without a more quantitative analysis (see e.g. [Ujfalussy817

and Orbán, 2022]), cannot be taken as direct evidence for the neural sampling hypothesis. Finally, the alignment of818

stimulus and noise correlations arises either as a consequence of approximate inference or due to a separate encoding819

process, e.g. in distributed sampling [Savin and Deneve, 2014].820

5.3 Relationship between spontaneous and evoked neural activity821

5.3.1 Empirical observations822

Neurons in sensory cortex are active even in the absence of external inputs [Faisal et al., 2008]. This spontaneous823

activity does not appear random but instead appears to be structured similar to activity evoked by external sensory824

inputs [Tsodyks et al., 1999, Kenet et al., 2003, Fiser et al., 2004, Luczak et al., 2009]. Furthermore, the statistical825

structures of the spontaneous and the evoked activity appear to converge over the course of development [Berkes et al.,826

2011], providing a constraint on models of probabilistic computations in the brain (but see [Avitan and Stringer, 2022]).827

Interpretation of the relationship between spontaneous and evoked activity in NSCs Under the assumption that828

complete darkness is interpreted by the brain’s internal model as the absence of information about the internally829

represented variable, z, the likelihood, p(o|z) is flat, and the posterior, p(z|o) ∝ p(o|vz)p(z), should equal the prior. If830
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neural activity represents the posterior, spontaneous activity should therefore reflect the brain’s prior. Furthermore, infer-831

ence in a well-calibrated generative model requires that the average posterior matches the prior, p(z) =
∫
p(z|o)p(o)do.832

Under the assumption that neural activity represents samples from the posterior, the distribution over spontaneous833

activities is therefore predicted to match the distribution over activities evoked by natural stimuli, o, provided that they834

are presented in proportion to their natural occurrence, p(o) – as tested and confirmed by [Berkes et al., 2011].835

Interpretation of the relationship between spontaneous and evoked activity in DDCs Since DDCs propose that836

neural responses represent extended moments of the posterior distribution, and therefore are linear functions of the837

posterior (‘linear distributional codes’ [Lange and Haefner, 2022]), the calibration argument described above predicts838

that average spontaneous activity equals average evoked activity. If moments are represented by average neural activity,839

i.e. firing rates, then this implies that the spontaneous firing rate should equal the average evoked firing rate. Note that840

this prediction is only a special case of the test in [Berkes et al., 2011] who found that the distribution over responses841

(spikes) equalled the distribution over evoked responses to natural stimuli. Assuming the DDC representation has, for842

instance, Poisson variability around the firing rate, this will not in general be compatible with the [Berkes et al., 2011]843

observation.844

Interpretation of the relationship between spontaneous and evoked activity in PPCs For PPCs, as with DDCs845

and NSCs, spontaneous activity is assumed to represent the prior distribution over the relevant latent variables. However,846

due to PPCs’ nonlinear relationship with the encoded distribution, average evoked activity is not expected to be related847

to spontaneous activity.848

Energy efficient PPCs prefer to represent priors with low levels of neural activity to conserve spikes when there is849

no information to report. This static consideration, however, is overly simplistic, as it fails to take into account the850

dynamics needed to implement inference. PPCs can straightforwardly be adapted to implement predictive coding851

algorithms, further increasing efficiency when performing inference on hierarchical generative models. In this case,852

populations of neurons represent residual likelihoods rather than posterior distributions. Associated patterns of activity853

that represent these probabilistic error signals exhibit greater transient variability in the presence of noise generated by854

feed forward and feedback connections. Moreover, dynamics designed to implement probabilistic reasoning tend to855

turn that variability into patterns of activity that qualitatively look like patterns of activity associated with posterior856

distributions. Thus, while there is not necessarily a relationship between spontaneous and evoked activity in a PPC,857

there are many dynamical systems utilizing PPCs that exhibit strong transient patterns of activity that resemblance858

evoked activity [Grabska-Barwinska et al., 2013].859

5.4 Oscillations860

Oscillations are a ubiquituous feature of cortical activity [Buzsaki and Draguhn, 2004]; however it is currently unknown861

to what they can constrain the neural implementation of probabilistice inference. On one hand they are predicted by862

fast algorithms implementing neural sampling using non-normal dynamics in models of hippocampus [Savin et al.,863

2014] and sensory cortex[Aitchison and Lengyel, 2016, Echeveste et al., 2020]. On the other hand, it has been recently864

shown that by modeling the hippocampal formation as a Helmholtz machine, theta oscillations can be used to mediate865

the wake-sleep algorithm [George et al., 2024]. As a result, it can be suggested that the implementation of the DDC866

framework through the wake-sleep algorithm in a Helmholtz machine might be compatible with neural oscillations;867

further analysis is required to investigate this scheme. No studies currently exist on their compatibility with PPCs.868

5.5 Neural–behavioral correlations869

Many experiments have measured behaviors that accord with behaviors based on probabilistic inference [Fiser et al.,870

2010, Pouget et al., 2013]. Of course this does not explain how the brain accomplishes this. To understand the neural871

basis of such behaviors, neuroscientists have examined whether neural representations of sensory uncertainty are related872

to actions. This is often accomplished by directly examining the relationship between neural activity and behavior.873

5.5.1 Empirical874

One common approach to measuring the relationship between neural activity and behavior is measuring the correlation875

between choices and individual neural responses. This correlation is known as choice probabilities [Britten et al., 1996,876

Haefner et al., 2013] or choice correlations [Pitkow et al., 2015, Clery et al., 2017, Yang et al., 2021, Chicharro et al.,877

2021]. A second approach is to predict (decode) behavior from the activity of a neural population (e.g. [Mante et al.,878

2013] and many others). A more sophisticated variant of this approach is to decode from the neurons targeted latent879

properties hypothesized to be important for behavior, and then ascertain whether those decoded quantities predict880

behavior [Shahidi et al., 2019, Wu et al., 2020]. A recent paper used this approach to decode uncertainty about the881
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stimulus from trial-by-trial fluctuations in neural activity, and found that this decoded uncertainty predicted shifts in882

decision criteria [Walker et al., 2020].883

5.5.2 Interpretations884

As explained in the variability section above, trial-to-trial variability in the observations will induce variability in the885

posterior over z and hence behavior, inducing correlations between neural representations of p(z|o) and behavior –886

regardless of the neural coding scheme. Interestingly, after learning, the structure of these correlations is approximately887

the same regardless of neural code [Lange and Haefner, 2022]. As a consequence, work showing agreement between888

empirical correlations [Haefner et al., 2016, Bondy et al., 2018], or decoded latents Walker et al. [2020], and predictions889

of probabilistic inference models based on particular codes, can only be taken as evidence in favor of the representation890

of posteriors rather than any one particular coding scheme over another.891

5.6 Behavioral data892

There are at least two ways in which behavioral data can constrain models of probabilistic computations in the brain.893

First, if behavior is close to optimal, then this places a constraint on the brain’s internal model insofar as that the task894

model must be a special case of the brain’s internal model. Second, any deviations in behavior from optimality place895

constraints either on the brain’s internal model and/or the approximate inference algorithm. Plausible deviations of the896

internal model may result from being adapted to natural inputs as opposed to task-specific ones, or due to incomplete897

learning of the task. In those situations, Bayesian inference makes predictions about the direction of behavioral change898

in e.g. perceptual learning paradigms. Alternatively, even if the internal model is correct, the specific approximate899

inference algorithm employed by the brain will lead to deviations from optimal behavior. Such deviations will generally900

depend on the specific algorithm, and thereby observed behavior placing constraints on which algorithm is employed by901

the brain.902

To test theories of probabilistic computations in the brain using neural data requires the specification of the link between903

computational quantities like samples or parameters, and neural responses (see 2.7). In analogy, testing the same904

theories using behavioral data requires a link between posteriors and actions. While much work exists on the nature of905

this link (e.g. [Kording, 2007]), we consider this beyond the scope of this manuscript, and will only briefly describe906

selected attempts in the hope to encourage further research in that direction and describe caveats.907

5.6.1 Behavioral bias908

As an example, Haefner et al. found that hierarchical inference by sampling in the context of a sequential evidence909

integration task led to an overweighting of evidence presented early in a trial[Haefner et al., 2016] . A follow-up study910

elaborating on this initial finding discovered that rather than being specific to sampling, this bias was also predicted911

by a variational inference model based on a parametric representation [Lange et al., 2021]. By interpolating between912

two related but different tasks, and by explaining data across both tasks with the same generative model structure,913

and the same inference algorithm, this study uses generalization across tasks as a way to address a general critique914

of probabilistic approaches: it is possible to explain any behavior as optimal inference on some generative model.915

However, this can be seen as a form of overfitting to a task, yielding a generative model that may not generalize to other916

tasks.917

5.6.2 Behavioral variability918

Just as for neural responses, variable behavior may arise as the result of variability in the posterior due to uncontrolled919

variability in the observations, or variability in the neural encoding or computation of the posterior [Drugowitsch et al.,920

2016, Lange et al., 2021, Shivkumar et al., 2022]. Furthermore, the variability in the posterior itself may be magnified921

by a mismatch between the internal model and the model generating the observations [Beck et al., 2012].922

Much like neural variability, human and nonhuman primate perception has been shown to be variable, even for constant923

external inputs. Examples are images with ambiguous interpretation (e.g. the vase/face image), and dichoptic stimuli924

that induce perceptual switching between the image shown to the left and the right eye [Blake and Logothetis, 2002].925

[Gershman et al., 2012] showed that sampling from a probabilistic model of bistable inputs implied a distribution over926

dominance times that qualitatively matched empirically observed distributions. [Moreno-Bote et al., 2011] showed that927

under the assumption that the posterior is represented as a linear PPC, an attractor network could generate samples from928

the posteriors that matched empirically observed distributions.929
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5.7 Does the entirety of the considered empirical data favor one of the neural codes?930

Overall, most of the observations considered above can qualitatively be explained by all of the proposals. The only931

exception may the observation that spontaneous activity is very similar to the average evoked activity: while this is932

directly predicted by neural sampling, it seems significantly harder to explain by DDCs and PPCs.933

6 Recommendations for future studies934

Testing for relationships between the neural representations for different posteriors: While systems neuro-935

science has traditionally focused on stimulus-response relationships, focusing on the relationships between the responses936

holds the promise of empirical tests of the different coding schemes that do not require explicit knowledge of the z that937

is being represented. A key example of this approach exploits the calibration property of probabilistic models: that the938

average posterior should equal the prior. This was tested by [Berkes et al., 2011] who compared spontaneous activity in939

area V1 to average evoked activity and found that they are statistically indistinguishable in mature ferrets. This result is940

predicted for any system that represents posterior beliefs under the assumption that placing the ferrets in a completely941

dark room is interpreted as ‘no input’ by the visual system. Recent work [Lengyel et al., 2023] has shown how to942

exploit a linearity property obeyed by some neural codes (DDCs and NSCs), but not all (e.g. PPCs), to test whether943

neural responses to different stimuli are linearly related to each other in a way suggested by the underlying posteriors to944

those stimuli. Such an approach may allow for the development of a method to compare brains and probabilistic models945

that is akin to representational similarity analysis (RSA [Kriegeskorte et al., 2008]) that allows for the empirical test of946

generative models and neural codes requiring weaker assumptions than currently needed by explicating a ‘complete’947

model.948

Generalization across multiple experiments and datasets: Given many possible choices for latent variables z, the949

generative model linking them to experimental variables p(z,o), s, and the concrete mapping between the posterior950

and the neural responses r, no single experimental dataset will be enough to constrain all of these degrees of freedom.951

However, we can make progress by focusing on the generalization properties of the probabilistic model. For data fitting952

to go beyond ‘Bayesian just so’ storytelling [Bowers and Davis, 2012], the same set of model choices should be able953

to explain all aspects of the data, not just a subset (e.g. tuning functions, their changes with uncertainty, or a given954

feature of response covariability, structure of spontaneous response covariability, behavioral response changes with955

uncertainty, etc). Testing for consistency of data-constrained probabilistic quantities across tasks (prior, latents, mapping956

to neural activity) thus seems to be a productive approach to validate such hypotheses, akin to behavioral-level attempts957

at constraining probabilistic descriptions of perception at the behavioral level [Maloney, 2002, Houlsby et al., 2013].958

Develop a quantitative benchmark for the comparison of probabilistic models: Another promising direction is959

to design a benchmark consisting of all relevant aspects of neural activity in one cortical area (e.g. membrane potentials,960

spike times, and spike rates), for a specific set of stimuli and behavioral contexts. This would facilitate fair comparisons961

when comparing different models and encoding schemes, and may accelerate progress for the same reasons benchmarks962

have been helpful in machine learning. Recent work has taken a step in that direction by directly fitting a flexibly963

parameterized generative model to neural responses to natural images under the assumption of a neural sampling code964

[Shrinivasan et al., 2024].965

Causal manipulations: The strongest way to test our understanding of the computations performed by a neural circuit966

is to causally manipulate that circuit. This allows us to directly attribute computational or behavioral consequences to967

the manipulated property. Modern neuroscience methods afford multiple ways of performing such causal interventions,968

including electrical, pharmacological, or optogenetic manipulations. As the controllable spatial and temporal resolution969

of these manipulations increases, our interventions can be more targeted to specific activity patterns of interest. However,970

even coarse interventions may provide illuminating tests for discriminating between probabilistic coding schemes.971

For instance, cooling or optically inactivating an area implies that the marginal belief about the corresponding variable972

z1 is either completely confident that the latent variable is zero, p(z1) = δ(z1) (for NSCs), or uninformative with973

p(z1) = const (for PPCs). As a result, NSCs predict that the neural variability in other areas representing z2 should be974

decreased (NSCs), while PPCs predict that the mean activity should be reduced since p(z2) will be less certain.975

Interactions across brain areas: We have emphasized the importance of computations because representations976

do not stand on their own. Their value lies in their use. Decades of past evidence has demonstrated that brain areas977

exhibit both some specialization and some hierarchical structure. Consequently, we expect that representations of978

different latent variables in different brain areas will influence each other in predictable ways. Some of this may be979

discernible through observing existing correlations [Semedo et al., 2019]. However, causal manipulations including980
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inactivation [Lakshminarasimhan et al., 2018], noise injection, or patterned perturbation [Chettih and Harvey, 2019,981

Adesnik and Abdeladim, 2021] are valuable in distinguishing direct interactions from indirect ones or from common982

causes [Lakshminarasimhan et al., 2018, Das and Fiete, 2020]. For all codes, only a subspace of neural activity may983

dominate the encoding of the parameters of the encoded probability distribution, so only perturbations that affect those984

dimensions should affect computations in other brain areas. In PPCs and DDCs, these are dimensions that project985

onto the sufficient statistics of the posterior. In sampling, these are dimensions that contribute to fluctuations in latent986

variables. For example, if multiple neurons represent the same variable, such that their population mean represents the987

sample, then population dimensions that increase some neurons’ firing while decreasing others’ will have no effect.988

Experiments that measure and then manipulate (or track noise in) these dimensions will allow the testing of whether989

these dimensions affect downstream computation in the manner predicted by each theory.990

Theoretical work on similarities and differences between the coding schemes: Theoretical work may find that991

these models are formally equivalent under some conditions. For example, recall that all of these models make992

predictions that depend critically on committing to assumptions of a generative model, including what latent variables z993

the distribution is over, what properties of neural activity r encode them, and how these are connected to observations o.994

For example, [Lange et al., 2023] showed that sampling over basis function amplitudes can manifest as a PPC over995

orientations on a coarser timescale. Different choices of experimental variables s to probe possible latent variables996

z may also lead to indistinguishable conclusions about the brain’s confidence when these two types of variables are997

highly informative about each other. Future studies may find that such relations hold more generally, underscoring the998

importance of defining and comparing the key assumptions from which predictions are derived. Deeper insights on the999

similarities and equivalences of different coding schemes will also yield a better understanding of the predictions on1000

which these schemes actually disagree, and the kind of data and experiments that may be able to definitely distinguish1001

between them.1002

Theoretical work on general framework which contains specific coding schemes as special cases: Following1003

existing work, this paper treats different coding schemes as alternative hypothesis. However, it might be more productive1004

to conceived them as special cases of a more general coding scheme. For instance, Lange et al. described a space in1005

which variational and sampling-based inference represent two extreme points along a continuum of inference algorithms1006

some of which may be a closer description of the brain’s encoding scheme than either of the extremes.1007

6.1 Conclusion1008

There is growing empirical evidence that Bayesian inference, and Bayesian decision theory, is a useful framework1009

for understanding human behavior. On the basis of this it is tempting to view neural activity through the same lens.1010

However, the jury is still out whether this is a fruitful approach, and whether the Bayesian framework has predictive1011

power for neural activity. For instance, outputs consistent with probabilistic computations emerge generically when a1012

sufficiently flexible computational system is trained in a world where probabilistic inference is the best way to solve1013

problems [Ramsey, 1926, Orhan and Ma, 2017]. However, whether the brain’s implementation can be mapped onto1014

Bayesian concepts like priors, likelihoods, posteriors, loss functions, variational parameters, moments, or samples, is1015

less obvious. But if it can, and if these mappings generalize across sensory inputs and behavioral tasks – an empirical1016

question – then this would greatly advance our understanding of the brain linking the computational level with the1017

implementation level via the algorithmic level.1018
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Cognitive tomography reveals complex, task-independent mental representations. Current Biology, 23(21):2169–1172

2175, 2013.1173

Patrik O Hoyer and Aapo Hyvärinen. Interpreting neural response variability as monte carlo sampling of the posterior.1174

In Advances in neural information processing systems, pages 293–300, 2003.1175

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s1176

visual cortex. The Journal of physiology, 160(1):106, 1962.1177

Przemyslaw Jarzebowski, Y Audrey Hay, Benjamin F Grewe, and Ole Paulsen. Different encoding of reward location1178

in dorsal and intermediate hippocampus. Current Biology, 32(4):834–841, 2022.1179

Edwin T Jaynes. Probability theory: The logic of science. Cambridge university press, 2003.1180

Mehrdad Jazayeri and J Anthony Movshon. Optimal representation of sensory information by neural populations.1181

Nature neuroscience, 9(5):690–696, 2006.1182

31



A PREPRINT - JULY 27, 2024

Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian compressive sensing. IEEE Transactions on signal processing, 56(6):1183

2346–2356, 2008.1184

Ilenna Simone Jones and Konrad Paul Kording. Might a single neuron solve interesting machine learning problems1185

through successive computations on its dendritic tree? Neural Computation, 33(6):1554–1571, 2021.1186

Philip X Joris and Laurence O Trussell. The calyx of held: a hypothesis on the need for reliable timing in an1187

intensity-difference encoder. Neuron, 100(3):534–549, 2018.1188

Prakash Kara, Pamela Reinagel, and R Clay Reid. Low response variability in simultaneously recorded retinal, thalamic,1189

and cortical neurons. Neuron, 27(3):635–646, 2000.1190

Johannes HB Kemperman. The general moment problem, a geometric approach. The Annals of Mathematical Statistics,1191

39(1):93–122, 1968.1192

Tal Kenet, Dmitri Bibitchkov, Misha Tsodyks, Amiram Grinvald, and Amos Arieli. Spontaneously emerging cortical1193

representations of visual attributes. Nature, 425(6961):954–956, 2003.1194

Daniel Kersten and Alan Yuille. Bayesian models of object perception. Current opinion in neurobiology, 13(2):150–158,1195

2003.1196

David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding and computation.1197

TRENDS in Neurosciences, 27(12):712–719, 2004.1198

David C Knill and Whitman Richards. Perception as Bayesian inference. Cambridge University Press, 1996.1199

Ádám Koblinger, József Fiser, and Máté Lengyel. Representations of uncertainty: where art thou? Current Opinion in1200

Behavioral Sciences, 38:150–162, 2021.1201

Konrad Kording. Decision theory: what" should" the nervous system do? Science, 318(5850):606–610, 2007.1202

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-connecting the1203

branches of systems neuroscience. Frontiers in systems neuroscience, page 4, 2008.1204

Anna Kutschireiter and Jean-Pascal Pfister. Particle-filtering approaches for nonlinear bayesian decoding of neuronal1205

spike trains. arXiv preprint arXiv:1804.09739, 2018.1206

Kaushik J Lakshminarasimhan, Alexandre Pouget, Gregory C DeAngelis, Dora E Angelaki, and Xaq Pitkow. Inferring1207

decoding strategies for multiple correlated neural populations. PLoS computational biology, 14(9):e1006371, 2018.1208

Richard D Lange and Ralf M Haefner. Characterizing and interpreting the influence of internal variables on sensory1209

activity. Current opinion in neurobiology, 46:84–89, 2017.1210

Richard D Lange and Ralf M Haefner. Task-induced neural covariability as a signature of approximate bayesian1211

learning and inference. PLoS computational biology, 18(3):e1009557, 2022.1212

Richard D Lange, Ankani Chattoraj, Jeffrey M Beck, Jacob L Yates, and Ralf M Haefner. A confirmation bias1213

in perceptual decision-making due to hierarchical approximate inference. PLoS Computational Biology, 17(11):1214

e1009517, 2021.1215

Richard D Lange, Ari S Benjamin, Ralf M Haefner, and Xaq Pitkow. Interpolating between sampling and variational1216

inference with infinite stochastic mixtures. In Uncertainty in Artificial Intelligence, pages 1063–1073. PMLR, 2022.1217

Richard D Lange, Sabyasachi Shivkumar, Ankani Chattoraj, and Ralf M Haefner. Bayesian encoding and decoding as1218

distinct perspectives on neural coding. Nature Neuroscience, pages 1–10, 2023.1219

Pierre Simon Laplace. Théorie analytique des probabilités, 2 vols. Paris: Courcier Imprimeur, 1812.1220

Pierre Simon Laplace. Théorie analytique des probabilités. Courcier, 1820.1221

Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual cortex. JOSA A, 20(7):1434–1448,1222

2003.1223

Robert Legenstein and Wolfgang Maass. Ensembles of spiking neurons with noise support optimal probabilistic1224

inference in a dynamically changing environment. PLoS computational biology, 10(10):e1003859, 2014.1225

Gabor Lengyel, Sabyasachi Shivkumar, and Ralf M Haefner. A general method for testing bayesian models using1226

neural data. In UniReps: the First Workshop on Unifying Representations in Neural Models, 2023.1227

Duncan Luce, David Krantz, Patrick Suppes, and Amos Tversky. Foundations of measurement, vol. iii: Representation,1228

axiomatization, and invariance. 1990.1229

Artur Luczak, Peter Barthó, and Kenneth D Harris. Spontaneous events outline the realm of possible sensory responses1230

in neocortical populations. Neuron, 62(3):413–425, 2009.1231

Wei Ji Ma. Organizing probabilistic models of perception. Trends in cognitive sciences, 16(10):511–518, 2012.1232

32



A PREPRINT - JULY 27, 2024

Wei Ji Ma, Jeffrey M Beck, Peter E Latham, and Alexandre Pouget. Bayesian inference with probabilistic population1233

codes. Nature neuroscience, 9(11):1432–1438, 2006.1234

Laurence T Maloney. Statistical decision theory and biological vision. na, 2002.1235

Laurence T Maloney and Pascal Mamassian. Bayesian decision theory as a model of human visual perception: Testing1236

bayesian transfer. Visual neuroscience, 26(1):147–155, 2009.1237

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent computation by1238

recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.1239

Gianluigi Mongillo, Omri Barak, and Misha Tsodyks. Synaptic theory of working memory. Science, 319(5869):1240

1543–1546, 2008.1241

Rubén Moreno-Bote, David C Knill, and Alexandre Pouget. Bayesian sampling in visual perception. Proceedings of1242

the National Academy of Sciences, 108(30):12491–12496, 2011.1243

Rubén Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq Pitkow, Peter Latham, and Alexandre Pouget.1244

Information-limiting correlations. Nature neuroscience, 17(10):1410–1417, 2014.1245
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