
Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

1 of 21

N E U R O S C I E N C E

Inductive biases of neural network modularity in
spatial navigation
Ruiyi Zhang1*, Xaq Pitkow2,3,4,5,6†, Dora E. Angelaki1,7†

The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized
modules that match the task structure. We hypothesize that this architecture enables better learning and generaliza-
tion than architectures with less specialized modules. To test this, we trained reinforcement learning agents with
various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture
that segregates computations of state representation, value, and action into specialized modules, achieved better
learning and generalization. Its learned state representation combines prediction and observation, weighted by
their relative uncertainty, akin to recursive Bayesian estimation. This agent’s behavior also resembles macaques’ be-
havior more closely. Our results shed light on the possible rationale for the brain’s modularity and suggest that arti-
ficial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.

INTRODUCTION
Accurate generalization beyond training tasks requires correct prior
knowledge of the task structure (1). However, as Hume (2) famously
highlighted in his “problem of induction,” one’s prior knowledge can
be fallacious, leading to unsuccessful generalization. Nevertheless,
animals have the ability to efficiently acquire the structure of their
daily tasks as prior knowledge for unencountered tasks outside their
typical domain (1, 3–5). This remarkable ability may stem from the
brain’s innate biases evolved for their daily tasks (1, 6, 7).

In theory, numerous solutions exist for a given task. For instance,
one solution may involve comprehending the task’s underlying
structure, i.e., understanding how data are generated from latent
variables (8–11), whereas another could rely on memorizing all
input- output pairs. Although both can produce positive results with
sufficient training, a solution that understands the task structure is
expected to exhibit greater data efficiency in mastering the training
task and can generalize to unseen, structurally similar tasks; in con-
trast, rote memorization requires seeing all training examples and
lacks generalizability. Every learning system for a task, whether bio-
logical or artificial, has a bias that favors some solutions over others,
known as the inductive bias. For a neural network, its architecture
defines a crucial aspect of this bias (6, 8, 12). To prioritize solutions
that learn the task structure and support generalization, the induc-
tive bias must be tailored to the specific tasks of interest, as there is
no universal inductive bias suitable for all tasks [no- free- lunch (NFL)
theorem] (13). Although we understand why inductive biases are
important, it is still unclear how to tailor a useful one.

The remarkable ability of animals to rapidly learn and generalize
in natural tasks suggests that their brains are indeed endowed with
suitable inductive biases for these tasks. One perspective suggests that
the brain may have evolved an inductive bias for a modular architecture

featuring functionally specialized modules (14–18). Each module
specializes in a specific aspect or a subset of task variables, collectively
covering all demanding computations of the task. We hypothesize
that this architecture enables higher efficiency in learning the struc-
ture of natural tasks and better generalization in tasks with a similar
structure than those with less specialized modules.

Previous theoretical works (8–11) have outlined the potential ratio-
nale for this architecture: Data generated from natural tasks typically
stem from the latent distribution of multiple task variables. Decom-
posing the task and learning these variables in distinct modules allow
a better understanding of the relationships among these variables and
therefore the data generation process. This modularization also pro-
motes hierarchical computation, where independent variables are ini-
tially computed and then forwarded to other modules specialized in
computing dependent variables. Hierarchical computation is a crucial
factor contributing to the success of deep neural networks (19). Note
that “modular” may take on different meanings in different contexts.
Here, it specifically refers to architectures with multiple modules, each
specializing in one or a subset of the desired task variables. Architectures
with multiple modules lacking enforced specialization in computing
variables do not meet the criteria for modular in our context.

To test our hypothesis, it is essential to select a natural task and
compare a modular architecture designed for the task against alter-
native architectures. We chose a naturalistic virtual navigation task
previously used to investigate the neural computations underlying
macaques’ flexible behaviors (20, 21), where subjects are required to
steer toward a transiently visible target using optic flow cues. Subjects
benefit from mentally computing multiple variables and understand-
ing their dependencies, including an internal state representation of
the outside world (a “belief ”) given partial and noisy sensory cues,
the motor commands (actions) used to control a joystick for naviga-
tion based on this belief, and the value of the action for the belief
state (22).

We therefore designed a modular architecture tailored for this task,
comprising dedicated modules that facilitate the recursive computa-
tion of beliefs using observations and predictions. It also includes
specialized modules to compute actions and values based on the
computed beliefs. This design not only promotes the modular
computation of distinct variables but also establishes a hierarchical
computation flow reflecting the dependencies among variables (e.g.,

1tandon School of engineering, new York University, new York, nY, USA. 2neurosci-
ence institute, carnegie Mellon University, Pittsburgh, PA, USA. 3department of
Machine learning, carnegie Mellon University, Pittsburgh, PA, USA. 4department
of neuroscience, Baylor college of Medicine, houston, tX, USA. 5department of
electrical and computer engineering, Rice University, houston, tX, USA. 6center for
neuroscience and Artificial intelligence, Baylor college of Medicine, houston, tX,
USA. 7center for neural Science, new York University, new York, nY, USA.
*corresponding author. email: rz31@ nyu. edu
†these authors contributed equally to this work.

copyright © 2024 the
Authors, some rights
reserved; exclusive
licensee American
Association for the
Advancement of
Science. no claim to
original U.S.
Government Works.
distributed under a
creative commons
Attribution license 4.0
(cc BY).

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

mailto:rz31@nyu.edu
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adk1256&domain=pdf&date_stamp=2024-07-19

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

2 of 21

action and value depend on belief). We also designed a set of alter-
native architectures for comparison, each featuring modules with
weaker specializations for particular task variables.

To train artificial agents using these architectures, we used rein-
forcement learning (RL) (23) with sparse reward signals, similar to
the training of macaques. We found that our modular architecture is
better suited for mastering our task than alternative architectures. It
demonstrated superior efficiency in learning a belief update rule,
akin to recursive Bayesian estimation (24), compared to other archi-
tectures. The modular agent’s belief is updated by weighing the prior
prediction from a motor efference copy against a likelihood derived
from visual observation of states. The reliability of the two sources
affects how these factors are combined, with the more reliable source
assigned a higher weight. Furthermore, we will show that the learned
control action of the modular agent reflects a more animal- like and
efficient behavior than actions from alternative architectures.

After training, we proceeded to evaluate these agents in two pre-
viously unencountered tasks derived from the training task. One
manipulated the sensorimotor mapping from joystick movements
to subjects’ movements in the environment. The other randomly ap-
plied passive perturbations to subjects’ movements. Macaques dem-
onstrated immediate generalization in these tasks (25). We found
that the modular agent exhibited accurate belief and robust control
in these unencountered tasks, showcasing a capacity for instant gen-
eralization comparable to macaques’ ability in these tasks (21, 25).
In contrast, agents with less- specialized modules demonstrated in-
ferior generalization performance. Furthermore, since there is no
universal inductive bias that aids generalization across all tasks (the
NFL theorem) (13), we also provided insights into why the modular
agent’s knowledge acquired from training proves valuable for these
unseen tasks, and when it does not.

RESULTS
RL agents trained to navigate using partial and noisy
sensory cues
To study naturalistic, continuous time computations involved in
foraging behaviors, we previously designed a virtual reality naviga-
tion task where macaques navigate to targets using sparse and tran-
sient visual cues (20). At the beginning of each trial, the subject is
situated at the center of the ground plane (with a radius of 70 m)
facing forward; a target is presented at a random location within the
field of view (distance: 100 to 400 cm, angle: −35° to +35°) on the
ground plane and disappears after 300 ms. The subject can freely
control its linear and angular velocities with a joystick (maximum:
200 cm/s and 90°/s, referred to as the joystick gain) to move along its
heading in the virtual environment (Fig. 1A). The objective is to
navigate toward the memorized target location and then stop inside
the reward zone—a circular region centered at the target location
with a radius of 65 cm. A reward is given only if the subject stops
inside the reward zone. The subject’s self- location is not directly ob-
servable because there are no stable landmarks; instead, the subject
needs to use optic flow cues on the ground plane to perceive self-
motion and perform path integration. Each textural element of the
optic flow, an isosceles triangle with a base and a height of 8.5 and
18.5 cm, appears at random locations and orientations, disappearing
after only a short lifetime (∼250 ms), making it impossible to use as
a stable landmark. A new trial starts after the subject stops moving
or the trial exceeds the maximum trial duration of 7 s. Given the

target distance and joystick velocities, an optimal subject should
reach the furthest target in around 2 s. Details of this task are de-
scribed in (20). Macaques can be trained to master this task, and all
macaque data presented in this paper were adapted from previously
published works (20, 21, 26, 27).

RL (23) is a reasonable framework for modeling behavior in this
task because, like animals, RL agents can learn this task through sparse
reward signals. We formulate this task as a partially observable Markov
decision process (POMDP) (28) in discrete time, with continuous
state and action spaces (Fig. 1B). At each time step t, the environment
is in the state st (including the agent’s position and velocity and the
target’s position). The agent takes an action at (controlling its linear
and angular velocities) to update st to the next state st+1 following the
environmental dynamics given by the transition probability T(st+1 ∣ st,
at) and receives a reward rt from the environment following the re-
ward function R(st, at) (a positive scalar if the agent stops inside the
reward zone). The task transition probabilities are Markovian because
st+1 depends directly only on variables at t and is conditionally inde-
pendent of all previous variables.

We use a model- free actor- critic approach to learning (Fig. 1B)
(23), with the actor and critic implemented using distinct neural
networks. At each t, the actor receives two sources of information
about the state: observation ot and last action at−1. It then outputs an
action at, aiming to maximize the state- action value Qt. This value is
a function of the state and action, representing the expected dis-
counted rewards when an action is taken at a state, and future re-
wards are then accumulated from t until the trial’s last step. Since the
ground truth value is unknown, the critic is used to approximate the
value. In addition to receiving the same inputs as the actor to infer
the state, the critic also takes as inputs the action at taken by the ac-
tor in this state. It then outputs the estimated Qt for this action,
trained through the temporal- difference reward prediction error
(TD error) after receiving the reward rt (∣rt + γQt+1 − Qt∣, where γ
denotes the temporal discount factor). In practice, our algorithm
incorporates additional mechanisms to enhance training (fig. S1, A
and B; see Materials and Methods) (29).

The state st is not fully observable, so the agent must maintain an
internal state representation (belief bt) for deciding at and Qt. Both
actor and critic undergo end- to- end training through backpropagation
(BP) without explicit objectives for shaping bt. Consequently, net-
works are free to learn diverse forms of bt encoded in their neural
activities that aid them in achieving their learning objectives. Ideal-
ly, networks may develop an effective Markovian belief update rule
akin to recursive Bayesian estimation (although this is not guaran-
teed; Materials and Methods). Recursive Bayesian estimation infers
a posterior density over the world state st from two primary sources
of evidence. The first source involves predicting the state st based on
its internal model of the dynamics, its previous posterior bt−1, and
the last self- action at−1 (e.g., a motor efference copy). The second source
is a partial and noisy observation ot of st drawn from the observation
probability O(ot ∣ st) (Fig. 1C). Note that the actual O in the brain for
this task is unknown. For simplicity, we model ot as a low- dimensional
vector, including the target’s location when visible (the first 300 ms,
Δt = 0.1 s), and the agent’s observation of its velocities through optic
flow, with velocities subject to Gaussian additive noise. Full details
of this formulation are shown in Materials and Methods.

Actor and critic networks can have a variety of architectures. Our
goal here is to investigate whether functionally specialized modules
provide advantages for our task. Therefore, we designed architectures

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

3 of 21

70°

400 cm

100 cm

100 cm

Modular agent's
trajectories Rewarded

Unrewarded

F

G H I

J K L

ED

Holistic Modular
Actors Critics

a
t

a
t

Q
t

o
t
,a

t-1

RNN

MLP

RNN
o

t
,a

t-1

a
t

a
tQ

t
b

t
,a

t

a
t

a
t

b
t
,a

t

Holistic Modular

o
t,at-1

Q
tr

t

a
t

a
t

RNN

b
t
,Q

t

a
t

a
t

o
t
,a

t-1

r
t

Q
t

MLP

RNN

b
t

Q
t

Actor

Critic Holistic

Modular

Holistic Modular

Stopping location vs. target

Psychometric function Performance Decodable variables

Agents Monkeys

0 150 300 450
Target location, r (cm)

0

150

300

450

S
to

p
lo

ca
tio

n,
	r(
cm

)

Radial
Holistic
Modular
B
S

−45 0 45
Target location, (°)

−45

0

45

S
to

p
lo

ca
tio

n,

 (°

)

Angular

0 65 200 400
Reward boundary size (cm)

0

0.5

1

Fr
ac

. c
or

re
ct

True size

Shuffled

0 0.25 0.5 0.75 1
Training trial (×104)

0

0.2

0.4

0.6

0.8

1

R
ew

ar
de

d
fra

ct
io

n

� r
�r

Stop location
Target

Start

Modular agent

Holistic agent
Monkey BMonkey S

0.8

0.9

1

A
U

C

0 0.5 1
Frac. correct (shuffled)

0

0.5

1

Fr
ac

. c
or

re
ct

 (t
ru

e)

Cha
nc

e

BA

s
t

a
t-1a
t-1

b
t-1

a
t

a
t

s
t-1 s

t+1

o
t-1 o

t+1

b
t+1

o
t

b
t

a
t+1a
t+1

C

Environ-
ment

Agent

Obser-
vation

s
t

o
t

a
t

a
t

Actor

Critic

a
t

a
t Q

t

a
t-1a
t-1

Input Training signal

T(s
t+1|st

,a
t
)

r
t
= R(s

t
,a

t
)

Information flow for agent Graphical model of task

Training curve for agents

Rewarded
trajectory

Unrewarded
trajectory

Target

Start

Navigation task

O(o
t
|s

t
)

(b
t
)

(b
t
)

Linear
velocity

Angular
velocity

Relative
distance

Relative
angle

Linear
action

Angular
action

0.8

0.9

1

D
ec

od
er

 p
er

fo
rm

an
ce

Sensory Latent Motor

Holistic agent's actor
RNN of modular agent's actor
MLP of modular agent's actor

o
t

b
t

a
t

Fig. 1. RL agents with different neural architectures were trained in a partially observable navigation task. (A) Schematic of the navigation task from the subject’s perspective.
(B) Block diagram showing the interaction between an Rl agent and the task environment. (C) Graphical model of the task. environment update, dark gray; belief update, light gray.
(D) Schematic of actors with a holistic (left) or modular (right) architecture. thought bubbles denote the variables computed in each module. dashed arrows indicate training signals.
(E) Similar to (d) but for critic networks. (F) Fraction of rewarded trials during the training process following training phase 1, measured using a validation set (500 trials) for each agent
at each checkpoint, which occurs every 500 training trials. Shaded regions denote ±1 SeM across training runs with eight random seeds. (G) An example trial showing monkeys and
agents navigating toward the same target. Shaded circle, reward zone. inset compares the target location versus the stop location of monkey S. (H) Overhead view of the spatial dis-
tribution of 500 representative targets and an example modular agent’s trajectories navigating toward these targets. (I) comparison of agents/monkeys’ stop locations for the target
locations from (h). Black dashed lines have a slope of 1. (J) Fraction of correct trials in a test set (1657 trials) as a function of hypothetical reward boundary size. Solid lines denote true
data; dashed lines denote shuffled data. the gray dotted line denotes the true reward boundary size. (K) true data versus shuffled data in (J) (ROc curve). inset shows AUc. (J) to (K)
Agents’ data are averaged across eight training runs. (L) Performance (Pearson’s r) of linear decoders trained to decode task variables from example neural modules using trials in (J).

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

4 of 21

incorporating modules with distinct levels of specialization for com-
parison. The first architecture is a holistic actor/critic, comprising a
single module where all neurons jointly compute the belief and the
action/value. In contrast, the second architecture is a modular actor/
critic, featuring modules specialized in computing different variables
(Fig. 1, D and E). The specialization of each module is determined as
follows. First, we can confine the computation of beliefs. Since com-
puting beliefs about the evolving state requires integrating evidence
over time, a network capable of computing belief must have some
form of memory. Recurrent neural networks (RNNs) satisfy this re-
quirement by using a hidden state that evolves over time. In contrast,
computations of value and action do not need additional memory
when the belief is provided, making memoryless multilayer percep-
trons (MLPs) sufficient. Consequently, adopting an architecture with
an RNN followed by a memoryless MLP [modular actor/critic in
Fig. 1 (D and E)] ensures that the computation of belief is exclusively
confined to the RNN. Second, we can confine the computation of the
state- action value Qt for the critic. Since a critic is trained end- to- end
to compute Qt, stacking two modules between all inputs and outputs
does not limit the computation of Qt to a specific module. However,
since Qt is a function of the action at, we can confine the computation
of Qt to the second module of the modular critic (Fig. 1E, right) by
supplying at only to the second module. This ensures that the first
module, lacking access to the action, cannot accurately compute Qt.
Therefore, the modular critic’s RNN is dedicated to computing bt and
sends it to the MLP dedicated to computing Qt. This architecture en-
forces modularity and hierarchical computation.

For the modular actor (Fig. 1D, right), while we know that bt
computation is confined to the RNN, there is no straightforward
way to confine at computation to the MLP module through architec-
ture design when both modules are trained end- to- end. Although a
well- trained modular actor may learn sequential computation by
computing at only in the MLP, it is not enforced, and at may still be
distributively computed in both modules. Nevertheless, the mod-
ular actor has higher specialization than the holistic actor, which
lacks confined bt computation. Thought bubbles in Fig. 1 (D and E)
denote the variables that can be computed within each module en-
forced through architecture rather than indicating they are encoded
in each module. For example, bt in modular architectures is passed
to the second module, but an accurate bt can only be computed in
the first RNN module.

We trained agents using all four combinations of these two actor
and critic architectures (Fig. 1F, legend). We refer to an agent whose
actor and critic are both holistic or both modular as a holistic agent
or a modular agent, respectively. The training concluded after agents
had experienced 104 trials (after training phase 1; see Materials and
Methods). Agents with modular critics demonstrated greater con-
sistency across various random seeds (Fig. 1F, shaded regions) and
achieved near- perfect accuracy more efficiently than agents with
holistic critics.

Agents’ behavior was compared with that of two monkeys (Fig. 1G)
for a representative set of targets uniformly sampled on the ground
plane (modular/holistic agent; Fig. 1H and fig. S1C). In the next sec-
tion, we will contrast the properties of agents’ trajectories, but first, we
focus on the accuracy of their stop locations (linear: r̃ , angular: θ̃)
versus the target location (linear: r, angular: θ; Fig. 1G, inset). The
tight correspondence between stop and target locations indicates that,
similar to monkeys, all agents had learned the training task (Fig. 1I;
Pearson’s r: fig. S1D). When stop locations were regressed against target

locations (without intercept), we noticed that, similar to monkeys,
agents also systematically undershot targets (fig. S1E; regression slope
<1). This finding can be predicted based on the RL framework: Al-
though the immediate reward for stopping at any location within the
reward zone is the same, those considering long- term values dis-
counted over time should prefer closer reward locations to save time.

We used a receiver operating characteristic (ROC) analysis (20,
21) to systematically quantify behavioral performance. A psycho-
metric curve for stopping accuracy is constructed from a large rep-
resentative dataset by counting the fraction of rewarded trials as a
function of a hypothetical reward boundary size (radius 65 cm is the
true size; infinitely small/large reward boundary leads to no/all re-
warded trials). A shuffled curve is constructed similarly after shuf-
fling targets across trials (Fig. 1J). Then, an ROC curve is obtained
by plotting the psychometric curve against the shuffled curve
(Fig. 1K). An ROC curve with a slope of 1 denotes a chance level
(true = shuffled) with the area under the curve (AUC) equal to 0.5.
High AUC values indicate that all agents reached good accuracy af-
ter training (Fig. 1K, inset). This accuracy can be explained by ac-
curate task variables encoded in their neural networks (actor:
Fig. 1L, critic: fig. S1F; see Materials and Methods), as previously
also shown in the macaque brain (21, 27, 30). Note that the modular
agent achieved near- perfect accuracy (Fig. 1F); therefore, a slightly
higher AUC for the holistic agent than for the modular agent
(Fig. 1K, inset) does not imply that the holistic agent is more accu-
rate. Instead, this small AUC difference arises because the modular
agent is more optimal in stopping near the boundary of the reward
zone, saving time while maintaining accuracy (see below).

Different architectures, different beliefs and actions
After training, the critic no longer interacts with the environment;
only the actor does. Therefore, agents’ behaviors rely on the two vari-
ables their actors compute: the internal belief and the action based
on this belief. In this section, we investigate these two variables for
all agents.

We first examine the belief. Using noisy observations ot and
noisy predictions from a motor efference copy at−1, the optimal be-
lief can be constructed through a Kalman filter (24). This filter
implements recursive Bayesian estimation when all variables are
Gaussian and the state transitions and observations are linear (Fig. 2A
and Materials and Methods). It computes a posterior (belief) from a
prior (based on its prediction) and likelihood (based on its observa-
tion) in two steps. In the prediction step, a prior for the current state
is computed using the last self- action at−1 and the last belief bt−1,
following the state transition T. The predicted result has two uncer-
tainty sources: one is the uncertainty in the last belief, denoted as
Pt−1; the other is the uncertainty of process noise associated with
prediction, denoted as a covariance matrix Σa. For our task, process
noise only arises in the velocity given at−1; the position is simply an
integral of the velocities, so there is no additional process noise. The
process noise in the linear and angular components is independent
(Eq. 4 in Materials and Methods), so the only nonzero elements in
Σa are two variances σ2

av
 and σ2

aω
 . These matrix elements correspond

to SDs σav and σaω, which we put into a vector σa and express in
units of the linear and angular joystick gains σa = αaG. For example,
when αa = 0.2 and G = [200 cm/s,90°/s]⊤ and then σa = 0.2G =
[40 cm/s,18°/s]⊤.

In the update step, the posterior (belief bt) multiplies the prior
from the prediction and the likelihood given the observation ot,

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

5 of 21

Holistic

A

+0 +0.2 +0.4 +0.6 +0.8

+0

+0.2

+0.4

+0.6

+0.8

0.0 -0.004 -0.01 -0.017 -0.03

-0.019 -0.023 -0.028 -0.035 -0.048

-0.052 -0.054 -0.06 -0.066 -0.084

-0.093 -0.098 -0.101 -0.111 -0.119

-0.136 -0.144 -0.148 -0.153 -0.167

Over observer EKF

-0.16 -0.08 0
AUC drop

+0 +0.2 +0.4 +0.6 +0.8

+0

+0.2

+0.4

+0.6

+0.8

0.0 -0.017 -0.049 -0.089 -0.13

-0.002 -0.02 -0.053 -0.092 -0.131

-0.004 -0.021 -0.055 -0.094 -0.134

-0.007 -0.024 -0.056 -0.094 -0.133

-0.012 -0.029 -0.059 -0.098 -0.14

Over predictor EKF

-0.14 -0.07 0
AUC drop

+0 +0.2 +0.4 +0.6 +0.8

+0

+0.2

+0.4

+0.6

+0.8

0.0 -0.005 -0.016 -0.033 -0.054

-0.01 -0.016 -0.027 -0.043 -0.065

-0.031 -0.036 -0.048 -0.061 -0.082

-0.056 -0.061 -0.073 -0.089 -0.105

-0.086 -0.093 -0.102 -0.113 -0.131

Modular

-0.13 -0.07 0
AUC drop

+0 +0.2 +0.4 +0.6 +0.8

+0

+0.2

+0.4

+0.6

+0.8

0.0 -0.026 -0.063 -0.107 -0.152

-0.009 -0.035 -0.072 -0.116 -0.157

-0.023 -0.047 -0.083 -0.125 -0.167

-0.042 -0.065 -0.099 -0.136 -0.176

-0.066 -0.086 -0.115 -0.152 -0.189

-0.19 -0.1 0
AUC drop

+0 +0.2 +0.4 +0.6 +0.8

+0

+0.2

+0.4

+0.6

+0.8

0.0 -0.011 -0.03 -0.054 -0.085

-0.007 -0.019 -0.036 -0.061 -0.092

-0.022 -0.034 -0.05 -0.076 -0.106

-0.043 -0.053 -0.07 -0.092 -0.119

-0.068 -0.077 -0.09 -0.114 -0.139

Hol. actor + mod. critic

-0.13 -0.07 0
AUC drop

+0 +0.2 +0.4 +0.6 +0.8

+0

+0.2

+0.4

+0.6

+0.8

0.0 -0.026 -0.061 -0.108 -0.153

-0.007 -0.033 -0.067 -0.11 -0.159

-0.024 -0.044 -0.08 -0.122 -0.164

-0.041 -0.063 -0.096 -0.134 -0.171

-0.063 -0.083 -0.112 -0.148 -0.183

Mod. actor + hol. critic

-0.18 -0.09 0
AUC drop

0.0

0.2

0.4

0.6

0.8

1.0

C
or

r.
w

ith
 o

ve
r p

re
d.

 E
K

F
0.0

0.2

0.4

0.6

0.8

1.0

C
or

r.
w

ith
 o

ve
r o

bs
. E

K
F

Shuffled

Over-pred.
modular

D

E

B

C

Prior LikelihoodPosterior
State

P
ro

ba
bi

lit
y

Use a
t-1,bt-1,T

b
t

Use o
t

vs. over observer EKF

vs. over predictor EKF

Over-pred.
modular

Actor

Critic Holistic

Modular

Holistic Modular

a (G)Testing a (G)Testing

o
(G

)
Te

st
in

g

o
(G

)
Te

st
in

g

a (G)Testing a (G)Testing

a (G)Testing a (G)Testing

o
(G

)
Te

st
in

g

o
(G

)
Te

st
in

g

o
(G

)
Te

st
in

g

o
(G

)
Te

st
in

g

Fig. 2. The modular agent learned an EKF- like belief. (A) Schematic of a Kalman filter in the 1d case, given zero- mean Gaussian noises. the prior is a prediction of the
state st using the last action at−1, the last belief bt−1, and the state transition T. the state’s likelihood depends on visual observation ot. the posterior bt combines these
two sources and provides a state estimation with an uncertainty smaller than only relying on a single source. (B) AUc drop with increased testing uncertainties from the
training uncertainties, averaged across eight random seeds. We ran 2000 trials for each seed. the uncertainties for agent training and computing the Kalman gain
in the eKF module were σa = 0.2G and σo = 0.1G for the over observer eKF (left) or were σa = 0.1G and σo = 0.2G for the over predictor eKF (right). We tested combina-
tions of five levels of uncertainties: {+0, +0.2, +0.4, +0.6, +0.8}G higher than the training uncertainties for both σa and σo. For example, when the training uses σa =
0.2G, then the tests use σa = {0.2,0.4,0.6,0.8,1}G. (C) Similar to (B) but for agents using Rnns to construct beliefs. the training uncertainties are identical to those used
for over observer eKF in (B). (D) correlation between AUc drop of over observer eKF in (B) and AUc drop of other agents using Rnns to construct beliefs [those in (c) and
fig. S2B]. error bars denote 95% confidence intervals (cis) obtained through bootstrapping. Gray, correlation of shuffled data. (E) Similar to (d) but using over predictor
eKF instead of over observer eKF in (B) for computing correlations.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

6 of 21

leading to weighted combinations of the means and covariances.
The weight on the observation is known as the Kalman gain, which
gives greater weight to the source with smaller uncertainty. The ob-
servation noise covariance is denoted as Σo, where the diagonal ele-
ments are the two variances σ2

ov
 and σ2oω for the observation of linear

and angular velocities (Eq. 5). All off- diagonal elements are zero. σov
and σoω can be put into a vector and are in units of G, i.e., σo = αoG.

Agents’ RNNs may learn a robust belief update rule akin to the
Kalman filter [more precisely, an extended Kalman filter (EKF) (31)
allowing nonlinear transitions]. In this scenario, during training,
the RNN would infer σa and σo from its inputs at−1 and ot (in con-
trast to the EKF where these uncertainties are provided) and inter-
nalize an accurate Kalman gain based on these two uncertainties.
Note that for our task, the Kalman gain relies solely on σa and σo and
is independent of prior uncertainty Pt−1 (Materials and Methods).

During the training in the last section, σa = 0.2G and σo = 0.1G
for all agents, referred to as the default training uncertainties. If an
agent develops an EKF- like belief, the learned Kalman gain should
weigh more on observations (since σo < σa). Consequently, we hy-
pothesize that in testing, the belief accuracy should be greatly af-
fected if observations are less reliable than in training. Conversely, it
should not be as greatly affected if predictions become more unreli-
able than in training.

To investigate this, we first defined an EKF agent (fig. S2A) that
computes beliefs in its actor and critic using EKF modules instead of
RNNs. We similarly trained this agent in the task using the default
uncertainties. The EKF module requires uncertainties to be provided
to compute the Kalman gain, which is then used to weigh prediction
and observation. During training, ground truth uncertainties were
provided for computing the Kalman gain. After training, during test-
ing, we fixed the Kalman gain in the EKF module to be the same as
that in training, but we increased the uncertainties in the task envi-
ronment beyond the training uncertainties. The performance change
with these testing uncertainties, measured by the AUC drop from the
AUC with training uncertainties (Fig. 2B, left: “over observer EKF”),
shows that the accuracy of this EKF belief, which has a Kalman gain
that weighs observation more heavily, is less susceptible to increased
σa but more susceptible to increased σo, consistent with our hy-
pothesis. Conversely, when trained and using more reliable predic-
tion than observation for computing its Kalman gain, e.g., σa = 0.1G
and σo = 0.2G (reversed training uncertainties), an EKF agent has a
belief that is less affected by increased σo but more affected by in-
creased σa (Fig. 2B, right: “over predictor EKF”).

With these baselines established, we conducted similar tests by
increasing uncertainties to levels higher than the training uncertain-
ties for all trained agents using RNNs for beliefs (Fig. 2C). These
agents were trained with the default training uncertainties, the same
as that for over observer EKF. Agents using holistic critics exhibited
performance changes more akin to over predictor EKF, while the
modular agent aligned most closely with over observer EKF (Fig. 2, D
and E). The modular agent resembled over predictor EKF only
when trained with reversed uncertainties (“over predictor modular”;
fig. S2B).

These results suggest that agents with different architectures
learned to rely on different information sources. The modular agent’s
belief closely aligns with the EKF, relying more on the source with
smaller uncertainty. In contrast, agents using holistic critics weighed
the less reliable source more heavily, and improving their belief
requires either training data with a larger uncertainty difference

between σa and σo (fig. S2, C and D) or a much longer training time
(fig. S2, E and F). Nevertheless, although the holistic agent learned a
belief that was suboptimal for the training task, this belief may be
beneficial for other tasks, resulting in better performance than the
modular agent in those tasks (fig. S2, G to I; see Discussion).

Next, we investigate agents’ actions. While we demonstrated in the
last section that all agents’ stop locations were accurate after training
(Fig. 1K), we also noticed distinct characteristics in their trajectories
(Fig. 1G). To quantify these differences, we examined two crucial tra-
jectory properties: curvature and length. When tested on the same
series of targets as the monkeys experienced, agents with modular
critics displayed more efficient trajectories than those with holistic
critics, characterized by smaller curvature and length (fig. S3, A and
B). Notably, the difference between trajectories generated by agents
with modular critics and those of monkey B was comparable to the
variation between trajectories of two monkeys (Fig. 3, A and B). In
contrast, when agents used holistic critics, the difference in trajecto-
ries from monkey B was much larger, suggesting that modular critics
facilitated more animal- like behaviors.

Agents are expected to develop efficient behaviors, as the value of
their actions gets discounted over time. Therefore, we assess their ef-
ficiency throughout the training process by measuring the reward
rate, which refers to the number of rewarded trials per second. We
found that agents with modular critics achieved much higher reward
rates (Fig. 3C), which explains their more efficient trajectories (fig. S3,
A and B).

Since the actors responsible for generating actions were trained by
maximizing the critics’ value estimation instead of the latent ground
truth value, the lower reward rates may be attributed to inaccurate
value estimation. To investigate this, we monitored the TD error for
critics during training. This error is the discrepancy between the cur-
rent value estimate and the discounted subsequent value estimate
combined with the current reward, serving as the learning objective
for the critic (Materials and Methods and Fig. 3D) (23, 29). A critic
that perfectly comprehends the task dynamics and rewards should
yield no errors. Agents with modular critics exhibited faster conver-
gence of TD errors, ultimately reaching much lower values compared
to agents with holistic critics (Fig. 3D). This suggests that the modu-
lar critic enhances efficiency and accuracy in learning the task struc-
ture, thereby providing a training signal that closely aligns with the
true nature of the task for the actor. Consequently, actors can develop
superior behavior in the training task, as opposed to those trained by
the holistic critic (Fig. 3C).

Furthermore, it is worth noting that the efficacy of actions de-
pends on the quality of the beliefs in the actor. Inferior actions by
agents using holistic critics may arise from accurate action choices
coupled with inaccurate beliefs. To investigate whether this action
itself is worse despite the quality of belief, we introduced a “holistic
EKF” agent incorporating a holistic critic and an EKF actor (fig. S3C).
Despite conditioning the control on a perfect EKF belief, this agent
still fell short when compared to a modular agent in terms of trajec-
tory characteristics and reward rate (fig. S3, D to F). This deficiency
was attributed to the inferior training signal from the holistic critic
for the action (fig. S3G).

Together, these results suggest that modular critics provide a su-
perior training signal compared to holistic critics, allowing actors to
learn more optimal beliefs and actions. With a poor training signal
from the holistic critic, the modularization of actors may not enhance
performance. Next, we will evaluate the generalization capabilities

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

7 of 21

of the trained agents to understand how the quality of belief and ac-
tion influences generalization.

Gain task: Generalization to previously unencountered
sensorimotor mappings
One crucial aspect of sensorimotor mapping is the joystick gain,
which linearly maps motor actions on the joystick (dimensionless,
bounded in [−1,1]) to corresponding velocities in the environment.
During training, the gain remains fixed at 200 cm/s and 90°/s for
linear and angular components, referred to as the 1× gain. By in-
creasing the gain to values that were not previously experienced, we
create a “gain task” manipulation. Monkeys demonstrated immedi-
ate generalization to unencountered gains and other task manipula-
tions (25). This prompts us to investigate whether our trained agents
can demonstrate similar generalization abilities. One distinction
between animals and agents in unencountered tasks is that monkeys
faced no constraints in learning, while the neural weights in our
agents were frozen. Nevertheless, monkeys’ performance was stable
in this gain task since the first trial (25), indicating that they do not
rely on lengthy learning to grasp these novelties (see Discussion).

To assess generalization abilities, monkeys and agents (the “Agent
selection” section in Materials and Methods) were tested with unen-
countered gains of 1.5× and 2× (Fig. 4A). Blindly following the same

action sequence as in the training task would cause the agents to
overshoot (no generalization hypothesis: Fig. 4B, dashed lines; Materials
and Methods). Instead, the agents displayed varying degrees of adap-
tive behavior (Fig. 4B, solid lines). To quantitatively evaluate behavioral
accuracy while also considering over/undershooting effects, we de-
fined radial error as the Euclidean distance between the stop and target
locations in each trial, with positive/negative sign denoting over/
undershooting (using idealized trajectories, see Materials and Methods).
Under the previously unencountered gains, agents with modular
critics consistently exhibited smaller radial errors than agents with
holistic critics (Fig. 4C), with the modular agent demonstrating the
smallest errors, comparable to those observed in monkeys (Fig. 4D
and fig. S4A). ROC analyses further confirmed the performance dif-
ferences among agents (Fig. 4, E and F).

Similar to the assessment of the agents’ trajectory characteristics,
reward rates, and TD errors in the previous section, we again evaluated
these quantities, this time under the unencountered gains. Agents
with modular critics displayed more animal- like generalization
trajectories, higher reward rates, and lower TD errors than agents
with holistic critics, with the modular agent showing the closest re-
semblance to monkeys, the highest reward rates, and the lowest TD
errors (fig. S4, B and C, and Fig. 4, G and H). Notably, the modular
agent not only learned the training task the fastest (Fig. 4G, vertical

BA

C
TD error during training

Curvature diff. from monk. B

Reward rate during training

0

25

50

75

100

125

150

Le
ng

th
 d

iff
er

en
ce

 (c
m

)

Monk. S

Length diff. from monk. B

D

0 0.25 0.5 0.75 1
Training trial (×104)

0

0.2

0.4

0.6

0.8

R
ew

ar
d

ra
te

 (t
ria

l/s
)

0 0.25 0.5 0.75 1
Training trial (×104)

0

0.1

0.2

0.3

0.4

0.5

TD
 e

rr
or

 (a
.u

.)

0

0.002

0.004

0.006

0.008

0.01

C
ur

va
tu

re
di

ffe
re

nc
e

(c
m

−
1)

Monk. S

Actor

Critic Holistic

Modular

Holistic Modular

Fig. 3. Agents with modular critics exhibit superior efficiency and performance in learning. (A) distribution of the absolute curvature difference between agents’ and
monkey B’s rewarded trajectories, as well as the difference between two monkeys’ rewarded trajectories, while all navigated to the same set of 1000 targets. the curvature
values were averaged across time steps for each trajectory. (B) Similar to (A) but showing the absolute length difference for each trajectory. (A) and (B) containing data
from eight random seeds for each agent. White bars denote means across trials. (C) Similar to Fig. 1F but showing the reward rate. For each checkpoint, the reward rate is
calculated by dividing the number of rewarded trials in a validation set (500 trials) by the time spent in seconds. (D) Similar to (c) but showing the agents’ td error aver-
aged across time steps and trials in the validation set after they reached an average accuracy of 60% across seeds. At each step t, the critic computes Qt based on the state
and action at t and Qt+1 based on the state and action at t + 1. the td error is then ∣rt + γQt+1 − Qt∣, where rt and γ denote the current reward and the discount factor
(Materials and Methods). a.u., arbitrary units.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

8 of 21

bars on the x axis) but also learned to generalize better and faster
than other agents, continuing to improve its generalization with ad-
ditional training trials (Fig. 4G). This trend is also evident in the
accuracy of the agents’ value estimates on unencountered gain trials
(Fig. 4H).

Together, these results demonstrate the impact of different induc-
tive biases on generalization to unencountered gains. The modular
critic enables better generalization than the holistic critic, and the
combination of a modular critic and modular actor produces the best
generalization performance.

Generalization in the gain task, facilitated by agents’
belief accuracy
Although we have confirmed that agents with distinct neural archi-
tectures exhibit varying levels of generalization in the gain task, the

underlying mechanism remains unclear. We hypothesized that agents
with superior generalization abilities should generate actions based
on more accurate internal beliefs within their actor networks. There-
fore, the goals of this section are to quantify the accuracy of beliefs
across agents tested on unencountered gains and to examine the im-
pact of this accuracy on their generalization performance.

During the gain task, we recorded the activities of RNN neurons
in the agents’ actors, as these neurons are responsible for computing
the beliefs that underlie actions (Fig. 1D). As expected, these neurons
showed sensitivity to the agents’ locations within the environment
(spatial tuning; holistic agent: Fig. 5A, modular agent: Fig. 5B;
Materials and Methods). To systematically quantify the accuracy of
these beliefs, we used linear regression (with 𝓁2 regularization) to
decode agents’ locations from the recorded RNN activities for each
gain condition (Fig. 5C; Materials and Methods). We defined the

1 1.5 2
Gain (×)

200

300

400
Li

ne
ar

 v
el

oc
ity

 (c
m

/s
) Trained

Tested

90

135

180

A
ng

ul
ar

ve
lo

ci
ty

(°
/s

)

0 0.5 1
Frac. correct (shuffled)

0

0.5

1

Fr
ac

. c
or

re
ct

 (t
ru

e)

Cha
nc

e

Gain 1×

0 0.5 1
0

0.5

1

No
 generalization

Gain 2×

A C

B

1 1.5 2
Gain (×)

0.7

0.8

0.9

1

A
U

C

1 1.5 2
Gain (×)

-100

-50

0

50

100

150

200

250

R
ad

ia
l e

rr
or

 (c
m

)

U
nd

er
-

O
ve

rs
ho

ot

Monk. B
Monk. S

Monk. B no generalize
Monk. S no generalize

Reward boundary

1 1.5 2
Gain (×)

-100

-50

0

50

100

150

200

250

R
ad

ia
l e

rr
or

 (c
m

)

U
nd

er
-

O
ve

rs
ho

ot

Reward boundary

F

G

D

E

H

Holistic Modular
Data
No generalization

Sensorimotor mapping gain Radial error of agents Radial error of monkeys

Performance

Generalization curve TD error with novel gains

Start

Undershoot

Over-

Actor

Critic Holistic
Modular

Holistic Modular

0 0.5 1
Training trial (×104)

0.2

0.4

0.6

0.8

1

TD
 e

rr
or

 (a
.u

.)

0 0.5 1
Training trial (×104)

0

0.2

0.4

0.6

0.8

1

R
ew

ar
d

ra
te

 (t
ria

l/s
)

>90% in training
trials

Fig. 4. Modular agent exhibits the best generalization performance in the gain task. (A) Gain is the parameter that linearly maps the joystick actions onto velocities in
the environment. the 1× gain used in training has linear and angular components of 200 cm/s and 90°/s, respectively. After training, 1.5× and 2× gains were used for testing.
(B) example trajectories of agents navigating toward a target with an unencountered 1.5× gain. dashed lines, hypothetical no generalization trajectories; arrows, regions of
over- or undershooting relative to the distance along an idealized circular trajectory connecting the start location to the target (gray line). (C) Radial error of agents’ stop loca-
tions across different gains. For each gain and agent, 8000 trials were conducted by concatenating results from eight random seeds, with the same set of 1000 targets for each
seed. error bars denote ±1 Sd across trials. the gray dotted lines denote the reward boundary of 65 cm, the same as in training. (D) Similar to (c) but for monkeys [the same
1000 targets as in (c) for each gain and monkey]. (E) ROc curves for agents in different gains. Gray dashed lines, the chance level; dashed lines in other colors, agents’ hypo-
thetical no generalization hypotheses. (F) AUc for ROc curves for all agents and gain conditions. (G and H) Similar to Fig. 3 (c and d), but data were averaged over two valida-
tion sets (the same set of 500 targets, gain = 1.5× and 2×). vertical bars overlaid on the x axis in (G) denote the first time agents reached 90% accuracy in the 1× validation set
(the same 500 targets, averaged across seeds). (e) to (h) lines denote means across eight random seeds for each agent; shaded regions or error bars denote ±1 SeM.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

9 of 21

decoding error, which represents the Euclidean distance between
the true and decoded locations, as an indicator of belief accuracy.
While all agents demonstrated small decoding errors under the
training gain, we found that agents struggling with generalization
under increased gains (Fig. 4F) also displayed reduced accuracy in
determining their own location (Fig. 5D and fig. S5A). Agents’ be-
havioral performance correlates with their belief accuracy (trial-
average: Fig. 5E; trial- by- trial: fig. S5B), a trend that was also observed
in monkeys (21).

In Fig. 2, we demonstrated that different architectures yield dis-
tinct belief update rules after training, with the modular agent’s be-
lief resembling an EKF. Our analyses here further indicate that this
EKF- like belief enables a more accurate state representation in pre-
viously unencountered gains, leading to superior generalization.

Perturbation task: Generalization to passive motions,
facilitated by belief accuracy
To assess one’s ability for generalization with manipulated latent
states in the environment, we introduce another task called the “per-
turbation task” (Materials and Methods). This task involves applying
passive perturbation velocities to the joystick control at a random
time for both the linear and angular components, causing monkeys
or trained agents (the “Agent selection” section in Materials and
Methods) to deviate from their intended trajectories. The perturba-
tions follow a Gaussian temporal profile lasting for 1 s (Fig. 6A),
with perturbation peak time relative to the trial start uniformly
sampled in the range [0.5,1.5] second and peak magnitudes for the
passive linear and angular velocities sampled in [−200,200] cm/s
and [−120,120]°/s for each trial. Figure 6B illustrates an example

13 33 53
Decoding error (cm)

0.71

0.83

0.95
P

er
fo

rm
an

ce
 (A

U
C

)

A

B

1 1.5 2
Gain (×)

0

10

20

30

40

50

D
ec

od
in

g
er

ro
r (

cm
)

C

D

E

−100 100 300
X (cm)

−50

250

550

Y
 (c

m
)

Modular
Holistic

Target

Gain 1×

−100 100 300
−50

250

550 Gain 2×

True
Decoded

Decoded vs. true trajectoryRNN of holistic agent's actor

RNN of modular agent's actor

Decoding error

Performance vs. decoding error

Neuron 1 Neuron 2

Gain:
1×

Neuron 3

1.5×

−400 0 400
X (cm)

0

300

600

Y
 (c

m
)

-0.2 0 0.2
Activity (a.u.)

-0.2 0 0.2

2×

-0.2 0 0.2

Neuron 1 Neuron 2

Gain:
1×

Neuron 3

1.5×

−400 0 400
X (cm)

0

300

600

Y
 (c

m
)

-0.6 0 0.6
Activity (a.u.)

-0.6 0 0.6

2×

-0.6 0 0.6

Actor

Critic Holistic

Modular

Holistic Modular

Fig. 5. Decoding error of agents’ internal beliefs correlates with their behavioral performance in the gain task. (A) Spatial tuning of example Rnn neurons in a
holistic agent’s actor. each column denotes a neuron; each row denotes a gain condition (2000 trials). dotted lines denote the boundary of a region containing all target
locations. (B) Similar to (A) but for example Rnn neurons in a modular agent’s actor. (C) decoded belief trajectories versus agents’ true trajectories during navigation to an
example target under different gain conditions. Agents’ belief trajectories were estimated by linear decoders trained to decode agents’ locations from Rnns’ activities in
actors (Materials and Methods). (D) decoding error as a function of gain. this error is defined as the distance between the true and decoded locations at each time step
and is averaged across time steps and trials in the test set. (c) and (d) For each seed of each agent in each gain condition, 1400 trials were used to train a decoder, and
another 600 trials were used for analyses. (E) AUc versus decoding error for 2× gain. For each seed of each agent, 3500 trials were used to train a decoder, and another
1500 trials were used for analyses. (d) and (e) error bars denote ±1 SeM across eight random seeds.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

10 of 21

0 115 230
0

50

100

150 No generalization
Monkey B

Reward boundary

0 115 230
Perturbation magnitude,

||[pvpeak
, p

peak
]||2

0

50

100

150

A
bs

. r
ad

ia
l e

rr
or

 (c
m

) Monkey S

A B C

D E

Agent
0.8

0.9

1

A
U

C

−20 65 150
−30

185

400

True
Decoded

−20 65 150
X (cm)

−30

185

400

Y
 (c

m
)

Target

0 115 230
Perturbation magnitude, ||[pvpeak

, p
peak

]||2

0

50

100

150

A
bs

. r
ad

ia
l e

rr
or

 (c
m

)

0 115 230
0

50

100

150

0 115 230
0

50

100

150

0 115 230
0

50

100

150

Agent performance

Monkey error

Agent error

Decoded vs. true
F G H

Start

Holistic Modular
Data
No

generalization

0 0.9 1.8
0

90

180

Start End

Linear perturbation

0 0.9 1.8
Time, t (s)

0

-40

-80

Li
ne

ar
 p

er
tu

rb
at

io
n

(c
m

)
A

ng
ul

ar
 p

er
tu

rb
at

io
n

(°
) Angular perturbation

(a.u.)

(a.u.)

Perturbation belief Belief behavior

16 25 34
Decoding error (cm)

0.8

0.85

0.94

B
eh

av
io

ra
l p

er
fo

rm
an

ce
 (A

U
C

)

−60−30 0 30 60
Perturbation

−60
−30

0
30
60

E
rr

or
 in

 b
el

ie
f Linear (cm)

−40−20 0 20 40
−15

0

15
Angular (°)

Agent
-0.7

-0.5

-0.3

-0.1

R
eg

re
ss

io
n

sl
op

e Linear

-0.15

-0.1

-0.05 Angular

Actor

Critic Holistic
Modular

Holistic Modular

Fig. 6. Agents with modular critics exhibit better generalization performance and more accurate internal beliefs in the perturbation task. (A) An example of
sampled linear and angular perturbations in a trial. (B) Agents navigate in an example trial under the perturbations shown in (A). dashed lines denote hypothetical no
generalization trajectories. (C) Monkeys’ absolute radial error as a function of perturbation magnitude (the euclidean norm of linear and angular perturbations) in 1000
trials. Gray, hypothetical no generalization trajectories. Solid lines and shaded regions denote means and ±1 Sd obtained using a moving window (size = 100 trials). the
dotted black line denotes the reward boundary of 65 cm, as in training trials. (D) Similar to (c) but for agents [1000 trials with target locations and perturbation parameters
identical to those in (c) for each seed of each agent, resulting in 8000 trials for each agent; moving window size=800 trials]. (E) AUc for data with perturbation magnitude
greater than 115 in (d). Bars denote means across random seeds; red dots denote data for individual seeds. (F) Similar to Fig. 5c but showing trajectories navigating to an
example target under perturbation. (G) top: confidence ellipses for the deviation of decoded stop locations from true stop locations (left/right: using locations’ linear
distance/polar angle) versus the integral of perturbation velocities (left/right: linear/angular perturbation) across trials. Bottom: Regression slope (without intercept) for
the data. (H) Similar to Fig. 5e but for perturbation trials. (F) to (h) For each seed of each agent, 3500 trials were used to train a decoder, and another 1500 trials were used
for analyses. the perturbation parameters were sampled from the ranges used in (c) and (d), but smaller linear (within [−100,100] cm/s) and angular ([−60,60]°/s) pertur-
bations were excluded in (h).

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

11 of 21

trial, displaying agents’ adaptive behaviors in response to the sam-
pled perturbations shown in Fig. 6A. If agents blindly follow the
same action sequence as in the training task (Fig. 6B, no generaliza-
tion hypothesis; see Materials and Methods), then they would devi-
ate toward the perturbation direction.

Monkeys displayed adaptation to perturbations, as evidenced by
their behavioral errors (Fig. 6C). When faced with the same pertur-
bations, agents with modular critics displayed errors comparable to
those of monkeys, which were much smaller than the errors pro-
duced by agents with holistic critics (Fig. 6D). ROC analysis also
supports these findings (Fig. 6E). This performance difference can
be attributed to the agents’ ability to adjust behaviors: Agents with
modular critics demonstrated greater compensation for perturba-
tions compared to those with holistic critics (fig. S6, A and B). Ma-
caques and humans also exhibited compensatory behaviors in this
task (26).

Similar to our observations in the gain task (Fig. 4, G and H),
agents’ generalization abilities (measured by reward rates) under
perturbation improved with increased exposure to training trials
(fig. S6C), and those with higher reward rates demonstrated a better
understanding of the perturbation task, as indicated by their lower
TD errors (fig. S6D).

We further investigated the neural mechanisms underlying agents’
different generalization abilities. As agents’ locations were perturbed,
their internal beliefs should continuously track these perturbed loca-
tions. Failure to do so would introduce errors into their internal be-
liefs, ultimately affecting generalization behaviors. To test this, similar
to our approach in the gain task (Fig. 5), we recorded the agents’ loca-
tions and the activities of RNN neurons in their actors under pertur-
bations. We then linearly decoded the agents’ locations from these
activities (Fig. 6F; see Materials and Methods) and measured the
difference between the true and decoded locations as an indicator of
belief accuracy. We found that increased perturbations caused agents’
beliefs to deviate from the true locations (Fig. 6G, top, and fig. S6, E
and F), with agents using modular critics being less affected than
those using holistic critics (Fig. 6G, bottom). These belief errors, akin
to what we observed in the gain task (Fig. 5E and fig. S5B) then prop-
agated to behavioral errors (trial- average: Fig. 6H; trial- by- trial:
fig. S6G).

Note that confidence ellipses used in the top two panels in Fig. 6G
represent the bivariate distribution of data (assuming Gaussianity)
in fig. S6 (E and F), produced by agents with eight random seeds
each. The center of an ellipse denotes the mean, and the region in-
side indicates within 1 SD. A positive/negative tilt in the major axis
of the ellipse indicates a positive/negative correlation, and a more
circular ellipse suggests a correlation closer to zero (Pearson’s r in
the same agent order as in Fig. 6G for the left: −0.67, −0.69, −0.42,
and −0.30; for the right: −0.30, −0.31, −0.26, and −0.19; P = 0).

These analyses again demonstrate the impact of architectural
inductive biases on generalization. By enabling actors to learn
EKF- like beliefs that remain accurate under perturbations, modu-
lar critics facilitate superior generalization than holistic critics.

Generalization contingent on learned Kalman gain
We have demonstrated that the modular agent learned an EKF- like
belief (Fig. 2, D and E). This proved to be more accurate when en-
countering unseen gains and perturbations, facilitating generaliza-
tion (Figs. 5E and 6H). Nevertheless, the reasons behind the high
accuracy of an EKF- like belief in these tasks remain unclear.

Agents were trained with the default training uncertainty σa =
0.2G in prediction and σo = 0.1G in observation. Therefore, an EKF-
like belief relies more on observations. Our gain and perturbation
tasks have structures that also necessitate a greater reliance on ob-
servation: Subjects must be aware of novel gains or perturbations via
observation of optic flow, as their internal model for prediction be-
comes outdated in these tasks. We hypothesize that the EKF- like
belief in previous sections favors generalization because the training
uncertainty aligns with the structure of unencountered tasks.

To verify this, it is essential to train agents with various pairs of σa
and σo so that for each pair, an EKF- like belief learns a unique reli-
ance on observation, i.e., the Kalman gain. We trained 16 modular
and 16 holistic agents, with each architecture being trained using a
combination of σa and σo within {0,0.1G,0.2G,0.3G}. An uncertainty
of 0 denotes the noise- free case. To investigate the Kalman gain
learned by each agent, we conducted analyses (Fig. 7A, top: modular,
bottom: holistic) similar to those in Fig. 2 (C to E). Specifically, just
like in Fig. 2C, each agent trained under a unique uncertainty condition
was tested with combinations of five levels of uncertainties {+0,
+0.2,+0.4,+0.6,+0.8}G higher than the training uncertainties for
both σa and σo. The resulting AUC drop table was then correlated
with that of over observer EKF and over predictor EKF in Fig. 2B, a
process akin to Fig. 2 (D and E). These two steps were repeated for
all agents trained with all combinations of σa and σo, and these re-
sults are shown in Fig. 7A (left: correlation with over observer EKF,
right: with over predictor EKF). A high correlation with over ob-
server EKF indicates the belief ’s high reliance on observation, while
a high correlation with over predictor EKF indicates a high reliance
on prediction.

Modular agents’ beliefs aligned with the latent uncertainties dur-
ing training, relying more on observations when trained with σo <
σa and leaning more toward prediction when trained with σa < σo
(Fig. 7A, top). However, holistic agents had inferior abilities in
learning beliefs that correspond to training uncertainties (Fig. 7A,
bottom). This deficiency is evident in specific uncertainty conditions
where observation was more reliable, yet holistic agents relied more
on prediction.

Following the estimation of agents’ learned Kalman gains, we
then assessed their performance in gain and perturbation tasks (see
the “Agent selection” section in Materials and Methods). Modular
agents (Fig. 7B, top) trained with smaller observation uncertainties
(σo < σa) generalized better than those trained with equal uncertain-
ties (σo = σa) and, worst of all, those trained with larger observation
uncertainties (σo > σa). However, holistic agents generalized poorly
in some uncertainty conditions where σo < σa (Fig. 7B, bottom). By
comparing agents’ learned Kalman gains (Fig. 7A) and performance
(Fig. 7B), generalization had a strong positive correlation with reli-
ance on observation and, conversely, had a negative correlation with
reliance on prediction (modular: Fig. 7C, holistic: Fig. 7D).

These findings confirm our hypothesis that constructing beliefs
based more on observation aligns with the structure of our gain and
perturbation tasks, so belief remains relatively accurate in these tasks
and facilitates generalization. Learning to rely more on observation
necessitates σo < σa during training. Modular agents can efficiently
discern the more reliable input source for their beliefs, while holistic
agents perform poorly in achieving this, leading to a reliance on pre-
diction even when observation is more reliable in some conditions.
With its inferior inductive bias for our tasks, holistic agents required
a much extended training period (105 trials after training phase 1,

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

12 of 21

10 times the previously used duration; Materials and Methods and
fig. S7A) to learn the Kalman gains that match training uncertainties.
As expected, this improvement in belief is associated with improved
performance in the unencountered tasks (fig. S7B). Nevertheless,
even after extensive training, holistic agents still generalized worse
than modular agents (fig. S7B). This performance difference is more

obvious when we evaluated them under more challenging gain and
perturbation parameters (fig. S7C). Note that with equal uncertain-
ties, the performance of agents trained without any noise (σo = σa =
0) is worse than that of agents trained with noise (σo = σa > 0;
fig. S7C). This may suggest that noise injected into inputs can im-
prove the robustness of learned solutions (32). Nevertheless, it is still

0 0.1 0.2 0.3

0

0.1

0.2

0.3

o

0.834 0.841 0.891 0.931

0.819 0.829 0.879 0.906

0.772 0.79 0.848 0.876

0.742 0.745 0.791 0.827

(G
)

Perturbation task

0.75 0.84 0.92
AUC

0 0.1 0.2 0.3

0

0.1

0.2

0.3

o

0.741 0.751 0.786 0.83

0.738 0.747 0.779 0.835

0.716 0.746 0.762 0.814

0.717 0.719 0.742 0.773

(G
)

Perturbation task

0.72 0.77 0.82
AUC

A

0 0.1 0.2 0.3

0

0.1

0.2

0.3

o

0.989 0.995 0.963 0.78

0.985 0.995 0.953 0.803

0.993 0.995 0.977 0.857

0.995 0.999 0.988 0.94

(G
)

Reliance on prediction

0.78 0.89 1
Corr. with over pred. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.376 0.354 0.514 0.802

0.407 0.363 0.537 0.783

0.345 0.356 0.459 0.717

0.343 0.305 0.392 0.571

Reliance on observation

0.32 0.56 0.8
Corr. with over obs. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3
o

0.793 0.846 0.543 0.282

0.84 0.867 0.592 0.387

0.964 0.966 0.811 0.623

0.989 0.994 0.965 0.873

(G
)

Reliance on prediction

0.29 0.64 0.99
Corr. with over pred. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.785 0.733 0.951 0.997

0.74 0.709 0.934 0.991

0.494 0.501 0.778 0.92

0.376 0.363 0.506 0.699

Reliance on observation

0.37 0.68 0.99
Corr. with over obs. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.82 0.833 0.924 0.95

0.799 0.821 0.92 0.942

0.759 0.773 0.84 0.893

0.742 0.738 0.784 0.828

Gain task

0.74 0.84 0.94
AUC

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.719 0.706 0.74 0.823

0.723 0.705 0.73 0.808

0.72 0.704 0.72 0.823

0.714 0.712 0.709 0.76

Gain task

0.71 0.76 0.81
AUC

−1.0

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Gain task

−1.0

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Gain task

−1.0

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Perturbation task

−1.0

−0.5

0.0

0.5

1.0
C

or
re

la
tio

n

Perturbation task

B
Generalization performanceLearned Kalman gain

Generalization vs. Kalman gain Generalization vs. Kalman gain
C D

Modular
Holistic

a (G)Training a (G)Training a (G)Training a (G)Training

a (G)Training a (G)Training a (G)Training a (G)Training

o
(G

)
Tr

ai
ni

ng
o

(G
)

Tr
ai

ni
ng

o
(G

)
Tr

ai
ni

ng
o

(G
)

Tr
ai

ni
ng

Reliance
on obs.

Reliance
on pred.

Reliance
on obs.

Reliance
on pred.

Reliance
on obs.

Reliance
on pred.

Reliance
on obs.

Reliance
on pred.

Fig. 7. Generalization in gain and perturbation tasks requires learning to rely more on observation. (A) left: Similar to Fig. 2d but showing modular (top) and holistic
(bottom) agents trained with 16 combinations of σa and σo. Specifically, for each agent trained under a particular uncertainty condition, the AUc drop when facing testing
larger uncertainties than seen in training was evaluated (similar to Fig. 2c). Subsequently, we measured the correlation between this AUc drop and that of the over observer
eKF in Fig. 2B (left) (similar to Fig. 2d). Right: Similar to left but showing the correlation between the AUc drop of each agent and that of over predictor eKF in Fig. 2B (right)
(similar to Fig. 2e). these two steps were repeated for each training uncertainty condition. (B) AUc for agents in (A) tested in the gain (left) and perturbation (right) tasks. in the
gain task, the testing gain was 2×. in the perturbation task, the testing perturbation peak time was 0.5 s, and the peaks of perturbation linear and angular velocities were
sampled uniformly from the ranges used in Fig. 6h. (A) and (B) two thousand trials were used for each seed of each agent. values for each agent were averaged across eight
random seeds. dashed lines denote when σo = σa. White/black text indicates below/above- average values. (C) left: correlation between modular agents’ learned Kalman gain
[values in (A), top] and their generalization performance in the gain task [(B), top left]. Right: Similar to left but using their generalization performance in the perturbation task
[(B), top right]. (D) Similar to (c) but showing the holistic agent [(A), bottom and (B), bottom]. (c) and (d) error bars denote a 95% ci obtained through bootstrapping.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

13 of 21

the relative reliability between two uncertainties that plays a major
role in shaping generalization.

We then investigate why the modular and holistic agents perform
differently (fig. S7C) even when the holistic agent’s learned Kalman
gain was accurate due to extensive training (fig. S7A). In Fig. 3, we
demonstrated that besides beliefs, the holistic agent also developed
inferior control actions. Here, we evaluated actions for agents exten-
sively trained with the default uncertainty (σa = 0.2G, σo = 0.1G)
under challenging gain and perturbation parameters (fig. S8, A and
B). We also considered a holistic EKF agent, incorporating a holistic
critic and an EKF actor (fig. S3C). We found that the holistic EKF
agent developed more efficient actions and generalized better than
the holistic agent, suggesting that actions are better when based on
an accurate EKF belief. Nevertheless, the modular agent’s actions
and performance were still superior to those of both the holistic EKF
and EKF agents (fig. S8, A and B).

Together, these findings suggest that the modular agent has a bet-
ter inductive bias than the holistic agent for our gain and perturba-
tion tasks, resulting in much better data efficiency for acquiring the
underlying structure of the training task. The modular architecture
favors generalization when its learned knowledge aligns with the
structure of unseen tasks. While additional training can ameliorate
the shortcomings of the holistic architecture to some extent, it can-
not entirely offset its inherent limitations.

More architectures using less specialized modules
Above, we compared the holistic architecture against the modular
architecture to investigate the advantages of module specialization.
In this section, we aim to further strengthen our argument by intro-
ducing more architectures that deviate from the modular architec-
ture (Fig. 8, A and B).

By using two sequential RNNs instead of one, critic/actor 2 can
distribute computations of two variables across two modules without
enforced specialization. Substituting an MLP for the second RNN in
critic/actor 2 yields critic/actor 3, where the belief computation over
time is confined to the first RNN. Alternatively, we can retain two
RNNs in the critic and exclusively provide the action input to the
second RNN. This yields critic 4, where the value computation is
confined to the second module. The modular critic confines both the
belief and value computation and has the most module specializa-
tion. Note that the total number of trainable parameters is designed
to be similar across all architectures (fig. S9A and see Materials and
Methods).

We extensively trained agents using all combinations of these
critics and actors (105 trials) with default uncertainties σa = 0.2G
and σo = 0.1G. We found that agents with less specialized critics
still demonstrated lower reward rates than those with a modular
critic (fig. S9B, left). This can be attributed to the less accurate value
estimates provided by their critics for training their actors (TD er-
rors; fig. S9B, right; Pearson’s r = −0.93).

We then compared these agents’ (the “Agent selection” section in
Materials and Methods) generalization abilities (Fig. 8, C and D).
Across critics, the modular critic (critic 5) outperformed all others.
Note that the architectural components used in the pairs of critics 5
and 3 (RNN + MLP) and critics 4 and 2 (RNN + RNN) are identical.
The only difference is that in critics 5 and 4, the value computation is
confined to the second module, as only there can the computation ac-
cess the action at, whereas critics 3 and 2 allow both modules to access
the action, eliminating such confinement. The performance difference

within each pair highlights the advantages of specialization for value
computation. Similarly, in critic 5, the belief computation is confined to
the first module, while in critic 4, it is not confined. The performance
difference between critics 5 and 4 demonstrates that specialization
for belief computation could further enhance performance. However,
specializing in belief without specializing in value did not provide
benefits, as indicated by the difference between critics 3 and 2 (mean
AUC across random seeds: Fig. 8, C and D, top; SEM of AUC across
random seeds: fig. S9C; reward rate: fig. S9D).

Actors’ performance was contingent on the choice of critic architec-
tures, as actors were trained by critics to learn the task structure. With a
modular critic, the modular actor benefits from a dedicated belief
module, enabling the development of an internal belief that remains
accurate in previously unseen tasks (Fig. 8, C and D, bottom).
Consequently, it outperformed others with less accurate beliefs
(Fig. 8, E and F).

Together, we conclude that the architecture using both the modular
critic and modular actor represents the most appropriate inductive bias
for our task, benefiting learning and generalization. The specialization
among modules, rather than simply the number of modules, matters.
To illustrate, critic 3 shares the same number and type of modules as
critic 5, and it has more modules than critic 1. Nevertheless, critic 3 did
not outperform critic 1 and performed worse than critic 5.

DISCUSSION
The brain has evolved advantageous modular architectures for mas-
tering daily tasks. Here, we investigated the impact of architectural
inductive biases on learning and generalization using deep RL
agents. We posited that an architecture with functionally specialized
modules would allow agents to more efficiently learn essential task
variables and their dependencies during training and then use this
knowledge to support generalization in unseen tasks with a similar
structure. To test this, we trained agents with architectures featuring
distinct module specializations on a partially observable navigation
task. We found that the agent using a modular architecture exhibited
superior learning of belief and control actions compared to agents
with weaker modular specialization. The modular agent’s beliefs are
akin to an EKF, properly weighing information sources according to
their relative reliability. Its actions are also more efficient and re-
semble trajectories of well- trained monkeys.

During our training task, the environment exhibits higher predic-
tion uncertainty than observation uncertainty, so the EKF- like belief
should—and does—rely more on observation than prediction. Subse-
quently, we tested trained agents in unseen tasks with parameters that
also favor greater reliance on observation. In line with the parameters
of these tasks, the EKF- like belief of the modular agent remains more
accurate than the belief of alternative agents, facilitating better gener-
alization in these tasks. Furthermore, the modular agent’s control is
also more robust in handling these unseen tasks.

Reasons for the benefits of modularization
One explanation of the benefits of modularization lies in its capac-
ity to structure the underlying task variables and their relationships,
allowing neural networks to learn the data- generating process more
efficiently and facilitating generalization where the learned knowl-
edge is reusable (8–11, 33). This proves especially advantageous
in natural tasks, where task variables typically exhibit sparse de-
pendencies.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

14 of 21

Inductive biases can be likened to “training data in disguise” (8).
They offer useful priors that align more closely with the optimiza-
tion solution, substantially reducing the search space and minimiz-
ing training time. Our findings demonstrated these principles. The
holistic agent, lacking the inductive biases of modularization, need-
ed substantially longer training than the modular agent to learn
computations correctly weighing information sources (fig. S2F).

We designed the modular architecture (Fig. 1E, right) with priors
of how latent variables are computed and their relationships. Spe-
cifically, the value computation in the critic involves observation ot,
previous action at−1, current action at, and value Qt. This computation

is broken down into two steps: firstly, computing bt in the belief
module and then computing Qt in the value module based on bt. By
design, the belief module receives ot and at−1 to compute bt, as bt
should weigh these information sources. This module has recur-
rence since bt depends on bt−1. However, it does not consider at as an
input, as at and bt are independent of each other. On the other hand,
the value module operates by receiving the computed bt and at be-
cause Qt is dependent on these two. It does not have recurrence, as
Qt is independent of Qt−1. The modular critic incorporates these
variable relationships through architectural design. In contrast, the
holistic critic lacks these priors embedded in its architecture and can

A

B
Actor 1 (holistic) Actor 2

E F

Critic 1 (Holistic)

o
t
,a

t-1

Q
tr

t

a
t

b
t
,Q

t

Critic 2
Q

t

r
t

o
t
,a

t-1 a
t

b
t
,Q

t

b
t
,Q

t

Critic 3

r
t

Q
t

o
t
,a

t-1 a
t

b
t
,Q

t

Q
t

Critic 4
Q

t

r
t

o
t
,a

t-1

a
t

b
t
,Q

t

b
t

Critic 5 (modular)

a
t

o
t
,a

t-1

r
t

Q
t

b
t

Q
t

o
t
,a

t-1

a
tQ

t b
t
,a

t

a
t

Q
t

o
t
,a

t-1

b
t
,a

t

b
t
,a

t

Actor 3 (modular)

Q
t

a
t

o
t
,a

t-1

b
t
,a

t

a
t

Actor

Critic Holistic
Modular

Holistic Modular

10 45 80
Decoding error (cm)

0.68

0.80

0.92

A
U

C

Pearson's r: -0.89

Gain task

16 33 50
Decoding error (cm)

0.76

0.85

0.94

A
U

C

Pearson's r: -0.92

Perturbation task

C D

Actor 1 Actor 2 Actor 3

Critic 1

Critic 2

Critic 3

Critic 4

Critic 5

56.6 63.9 55.9

66.3 47.2 46.5

52.3 49.0 51.0

37.3 36.2 32.9

36.1 21.3 15.7

20 40 60
Decoding error (cm)

Actor 1 Actor 2 Actor 3

Critic 1

Critic 2

Critic 3

Critic 4

Critic 5

0.808 0.81 0.834

0.779 0.841 0.832

0.803 0.828 0.83

0.814 0.833 0.834

0.874 0.914 0.929

Perturbation task

0.78 0.85 0.92
AUC

Actor 1 Actor 2 Actor 3

Critic 1

Critic 2

Critic 3

Critic 4

Critic 5

0.759 0.766 0.783

0.707 0.758 0.764

0.726 0.752 0.764

0.809 0.856 0.851

0.801 0.854 0.906

Gain task

0.71 0.8 0.9
AUC

Actor 1 Actor 2 Actor 3

Critic 1

Critic 2

Critic 3

Critic 4

Critic 5

39.8 42.6 36.2

45.9 37.7 30.8

34.2 33.2 34.7

41.0 33.9 36.5

22.6 21.0 18.1

19 32 45
Decoding error (cm)

Fig. 8. Agents using less specialized modules exhibit less accurate internal beliefs, resulting in inferior performance compared to the modular agent. (A and
B) critic and actor diagrams as in Fig. 1 (e and d) but including more architectures with less specialized modules. (C and D) AUc (top) and decoding error (bottom, aver-
aged across time steps and trials) of agents in the gain (c) and perturbation (d) tasks, averaged across eight random seeds. For each seed of each agent, 2000 trials were
conducted. Gains were sampled from [3×, 4×] for (c). Perturbation peak time was sampled from [0.5,1.5] s, and peaks of linear and angular perturbation velocities were
sampled from [−200,800] cm/s and [−180,180]°/s for (d). Beliefs were decoded from the Rnn for actors 1 and 3 or the first Rnn for actor 2. the four corners represent the
four agents used in the previous analyses. text in white/black denotes that the agent is worse/better than the average value of all agents. (E and F) AUc versus decoding
error using data in (c) and (d). error bars denote ±1 SeM across random seeds.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

15 of 21

only acquire these relationships through learning. However, the suc-
cessful learning of these relationships is not assured, as agents with
weaker module specialization exhibited inferior performance even
after extensive training (fig. S9B).

It is also worth noting a key distinction from supervised learning:
In training the critic, the learning target rt + γQt+1 is not fixed. The
next value Qt+1 is bootstrapped by the critic itself or a delayed up-
dated version (Materials and Methods) (29, 34). Consequently, the
learning target changes with updates of the critic, presenting an in-
herent challenge in achieving convergence (34). A strong inductive
bias may effectively narrow down the solution search space, offering
a more stable learning target. This is evident in the TD error (differ-
ence between the value estimation and the learning target) during
training (Fig. 3D). This error for the modular critic converged faster
and to a smaller error. A well- converged critic enhances the accura-
cy of its value estimates, serving as a more reliable training signal for
the actor.

Generalization but NFL
The NFL theorems proved that no inductive bias can excel across all
tasks (13). When agents are evaluated in domains vastly distinct
from their training settings, such as learning navigation but being
tested in a bandit task, it is expected that generalization falters. Fur-
thermore, even for tasks related to the training task, generalization
may prove challenging if the acquired knowledge does not align with
the structures of the new tasks.

Agents with a modular architecture can acquire the underlying
structure of our training tasks. In contrast, holistic agents tend to
acquire different knowledge from modular agents during training,
such as forming beliefs based on unreliable information sources or
exhibiting less efficient control actions. The gain and perturbation
tasks have structures similar to the training task (when observations
are more reliable), relying more on observation for belief formation
and efficient steering. Consequently, a modular agent that accurate-
ly learns the training task’s structure can leverage its knowledge in
these previously unseen tasks. However, it is worth noting that an
infinite number of new tasks can be constructed, diverging from the
training task’s structure but aligning with the “inferior” beliefs and
control acquired by holistic agents.

Other tasks may be more aligned with the holistic agent’s belief.
As in Fig. 2C, modifying uncertainties σa and σo to values higher
than those during training can be regarded as an unencountered
task. When this task presents much higher σo than σa (fig. S2, G and
H, bottom left), the reliability of observations is considerably lower
than that of predictions. Consequently, the holistic agent prioritiz-
ing predictions for belief outperformed the modular agent prioritiz-
ing observations in this scenario (fig. S2I).

A task can also be favored by the holistic agent’s control. During
training, the reward for stopping at any location within the reward
zone remains consistent and is discounted over time. The holistic
agent tends to develop less efficient trajectories, stopping closer to
the center of the reward zone, while the modular agent learned to
stop nearer to the reward zone boundary to save time (fig. S1E),
thereby achieving a higher reward rate (Fig. 3C). Introducing an un-
encountered task with a variable reward, decreasing as a function of
the distance between the stopping location and the reward zone cen-
ter, and not discounted over time, should result in superior perfor-
mance by the holistic agent compared to the modular agent tested in
this task.

Limitation and future directions
Inductive biases play a crucial role in learning systems. However, when
confronted with unseen tasks featuring structures distinct from those
in training, intelligent systems, like animals, do not solely depend on
existing knowledge. Instead, they also use efficient and adaptable
learning algorithms to continually update their understanding of the
new task at hand (1), a capability that our current models lack.

Various brain- inspired algorithms have been proposed to facilitate
efficient learning of unseen tasks while leveraging previously acquired
knowledge from old tasks. For example, the successor representation
(35, 36), replicating place and grid cell properties, decomposes the
value into a representation of transition probabilities learned from
training and a reward function model, allowing more efficient learn-
ing in previously unseen tasks with new rewards. By only learning re-
wards, values can be reconstructed using these rewards and previously
learned transitions. Furthermore, the meta- RL algorithm (37), in-
spired by the standalone fast learning system of the prefrontal cortex
that is shaped by (but distinct from) the slow dopamine- based RL
(38), uses model- free values to train a standalone RNN policy network
that maps inputs to actions across multiple tasks. This allows the policy
network to learn not just a single policy but an embedded learning
algorithm for learning new tasks.

Numerous previous studies have identified animal- like behavior
and neural computation in RL agents in a diverse range of tasks (35,
37, 39–43). This “NeuroAI” paradigm (44) bridges neuroscience and
AI, leveraging insights from the brain to enhance AI capabilities in
tasks where animals excel naturally. A central challenge for this para-
digm lies in reconciling various proposed brain- inspired algorithms,
each advantageous for specific tasks. Addressing this challenge may
involve incorporating modular inductive biases, recognizing the di-
verse functional and algorithmic specializations observed in differ-
ent brain regions (35, 37, 45, 46). Inspired by this and the advantages
of modularization that we have presented, future investigations could
develop large modular networks that integrate diverse algorithms
proposed in previous studies (35, 37, 39–43) into distinct modules.
For instance, we may equip our agent with efficient learning algo-
rithms in new modules, enabling it to tackle previously unseen tasks
with structures much different from its training data. Depending on
the current task demands, agents could choose strategies such as
zero- shot generalization, efficient learning to update specific knowl-
edge aspects (35, 47–50), or complete relearning.

It is worth noting that although our work compared the behaviors
of animals and agents after training, their learning processes differ, and
this difference is not the objective of our study (see Supplementary
Text for details). Furthermore, future work may investigate the advan-
tage of an inductive bias that enforces two different neural modules to
approximate prediction and update steps in an EKF sequentially. Our
current modular agent uses a single RNN to approximate the entire
EKF computation (see Supplementary Text for details).

MATERIALS AND METHODS
Task
The navigation task and its manipulations were originally designed
for macaques (20, 21, 25–27, 30). All macaque data used in this pa-
per were from previous works (20, 21). Below, we provide a sum-
mary of the animal task setup based on (20).

Subjects used an analog joystick with two degrees of freedom to
control their linear and angular speeds in a virtual environment.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

16 of 21

This virtual world comprised a ground plane with textural elements
having a limited lifetime of ∼250 ms. The ground plane was circular
with a radius of 70 m. The subject was positioned at its center at the
beginning of each trial. Each texture element was an isosceles tri-
angle (base by height: 8.5 cm by 18.5 cm) that randomly reposi-
tioned and reoriented anywhere in the arena. The maximum linear
and angular speeds were fixed to 200 cm/s and 90°/s, respectively,
and the density of the ground plane was either held constant at
2.5 elements/m2 or varied randomly between 0.1 and 2.5 elements/
m2. The stimulus was rendered as a red- green anaglyph and projected
onto the screen in front of the subject’s eyes. Subjects wore goggles
fitted with Kodak Wratten filters to view the stimulus. The task was
to steer to a random target location that was cued for 300 ms at the
beginning of the trial. Each trial was programmed to start after a
variable random delay between 0.5 and 1.1 s following the end of the
last trial. The target was a circular disc with a radius of 20 cm, match-
ing the luminance of the texture elements. It appeared at a random
location between −35 and +35° of visual angle and at a distance of
100 to 400 cm relative to the subject at the beginning of the trial.
Monkeys received a drop of juice if their stopping position was
within 65 cm away from the center of the target. No juice was pro-
vided otherwise.

Task modeling
We modeled this task as a POMDP (28) for RL agents, containing a
state space S, an action space A, a transition probability T, a reward
function R, an observation space Ω, an observation probability O,
and a temporal discount factor γ = 0.97 over steps within a trial.
State
Each state st ∈ S is a vector [sxt, syt, sθt, svt, sωt, gxt, gyt]

⊤ containing the
agent’s x and y positions (centimeters), head direction (degrees), linear
and angular velocities (centimeter per second, degree per second), and
the target’s x and y positions (centimeters). The initial state of each
trial was defined as s0 = [0,0,90,0,0, gx0

, gy0
]⊤, since the agent always

starts from the origin facing forward (90°). The target location was
uniformly sampled on the ground plane before the agent, with the
radius gr ∈ [100 cm,400 cm] and the angle gθ ∈ [90° − 35°,90° + 35°]
relative to the agent’s initial location. Specifically, angles were drawn
uniformly within the field of view, gθ ∼ 𝒰(55°,125°), and we sampled
radial distances as gr ∼

√
�(1002, 4002) to ensure a spatially uniform

distribution in two dimensions (2D). Target positions in Cartesian
coordinates are then gx0

 = gr cos (gθ), gy0
 = gr sin (gθ).

Action
Each action at ∈ A is a vector [avt, aωt

]⊤ containing the agent’s linear
and angular joystick actions, bounded in [−1,1] for each component.
Transition
State transitions st+1 ∼ T(st+1 ∣ st, at) were defined as st+1 = fenv(st, at) +
ηt, where

and zero- mean independent Gaussian process noise added to the
velocities

with SD σa = [σav, σaω
]⊤. The operator diag(·) constructs a diagonal

matrix with its vector argument on the diagonal. The time step is
Δt = 0.1 s. Joystick gain G = [Gv, Gω]⊤ = [200 cm/s, 90°/s]⊤ maps
dimensionless linear and angular joystick actions to units of veloci-
ties. Gain multiplier n scales G. Linear and angular perturbation
velocities are pvt and pωt.
Reward
The reward function R(st, at) maps a state- action pair to a scalar rt. We
firstly defined an action threshold a* = 0.1 to distinguish between
when the agent had not yet begun moving and when they moved and
stopped: The agent must increase the magnitude of at least one action
component above a* in the beginning (start criterion), and then the
agent must reduce the magnitude of both action components below a*
to indicate a stop (stop criterion). Nonzero rewards were only offered
in the last step of each trial and if the agent satisfied both criteria. For
the nonzero rewards, we defined dt = [sxt, syt]

⊤ − [gxt, gyt]
⊤ as the dis-

placement between the agent’s and the target’s locations, and a reward
rt = 10 would be given if the Euclidean distance ∥dt∥2 was smaller
than the radius of the reward zone d* = 65 cm. To facilitate training in
the early stages, we allowed a small reward rt = 10exp(−0.5d⊤

t
Σ−1
r
d
t
)

if the agent stopped outside the reward zone, where Σr = (d*/1.5)2I2 is
a constant matrix, and I2 denotes the identity matrix of size 2.
Done
A trial ended when the agent stopped, or if t exceeded the maximum
trial duration 3.4 s. For later convenience, let Dt denote a trial com-
pletion flag that equals 1 if the trial is done at t otherwise 0. A new
trial thereafter started with a new sampled initial state s0.
Observation
ot ∈ Ω is a vector [ovt, oωt

, ogx,t, ogy,t]
⊤ containing observations of the

agent’s linear and angular velocities through optic flow and the tar-
get’s x and y positions when visible in the first 0.3 s of each trial. ot ∼
O(ot ∣ st) was defined as

where ζt is a zero- mean Gaussian observation noise, and the observa-
tion model Ht is a 4 × 7 matrix filled mostly with zeros, except for a
few observable elements depending on the time within a trial: When
t ≤ 0.3 s, the target is visible, so H1,4, H2,5, H3,6, and H4,7 are equal to
1, where superscripts denote row and column; after t = 0.3 s, the tar-
get disappears and only the optic flow is observable, so only H1,4 and
H2,5 are 1. For the observation noise, ζ0 = 0, ζt>0 = [ζvt, ζωt

,0,0]⊤,
where ζvt and ζωt

 denote linear and angular observation noises, and
[ζvt , ζωt

]⊤ ∼�
[
0, diag(σ2

o
)
]
 with SD σo = [σov, σoω

]⊤.

Task parameters
Training task
The gain multiplier in Eq. 1 is given by n = 1. There were no perturba-
tions, so for any t, pvt = pωt = 0. Process and observation noise SDs
were in units of G, i.e., σa = αaG and σo = αoG. αa, αo ∈ {0,0.1,0.2,0.3}
were used in Fig. 7. αa = 0.4 and αo = 0.1 were used in fig. S2 (C and
D). αa = 0.2 and αo = 0.1 were used to train agents for all other figures.
Gain task
The gain multiplier n was increased to values greater than 1 for n×
gain. The gain for each analysis was specified in its caption. Noise

fenv(st , at) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sxt +Δt svt cossθt

syt +Δt svt sinsθt

sθt +Δt sωt

nGvavt +pvt

nGωaωt
+pωt

gxt

gyt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

ηt = [0, 0, 0, ηvt , ηωt
, 0, 0]⊤, [ηvt , ηωt

]⊤ ∼�
[
0, diag(σ2

a
)
]

ot = Htst + ζt (2)

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

17 of 21

SDs were also multiplied by the same gains, i.e., σa = αanG, σo =
αonG. There were no perturbations.
Perturbation task
Parameters n, σa, and σo were the same as those in the training task.
There were three perturbation parameters sampled for each trial:
perturbation peak time relative to the trial start tp and perturbation
linear and angular peaks pvpeak and pwpeak. These parameters were
sampled from the ranges specified in the caption for each analysis.
The sampled perturbation parameters determined Gaussian- shaped
linear and angular perturbations in Eq. 1, defined as

Belief modeling
The state st is partially observable in our task; therefore, an agent can-
not make a good decision only based on the current sensory inputs.
Instead, it benefits from maintaining a belief state representation bt,
which is a posterior of st, for decision- making. We considered both a
model- based inference method and a gradient- based optimization
method to model the belief.
Recursive Bayesian estimation
When the transition probability T and the observation probability O
are known, the belief is a posterior of st given all available observa-
tions and actions, i.e., bt = p(st ∣ o0:t, a0:t−1), and can be inferred re-
cursively as

where C = p(ot ∣ o0:t−1, a0:t−1) is a normalization constant, and bt−1 =
p(st−1 ∣ o0:t−1, a0:t−2).
EKF belief
When all variables are Gaussian in the recursive Bayesian estimation
and T is nonlinear, the EKF (31) is a tractable method that uses a
local linearization to approximate Eq. 3. The belief here is a Gaussian
density bt =�(̂st , Pt) . To simplify the computation here, we express
position in relative coordinates by letting the initial belief mean be
�s0 = [�sx0 ,�sy0 ,�sθ0 ,�sv0 ,�sω0

]⊤ = [−gx0 , −gy0 , 90, 0, 0]
⊤ and let the state

transition fenv contain the first five equations in Eq. 1 to reduce the
dimensionality of the state by two. Let ϵ denote a small number 10−8,
we defined the initial belief covariance P0 = ϵI5. Let a 5 × 5 matrix Σa
denote the Gaussian process noise covariance filled with 0 except
Σ4,4
a

= σ2
av

 , Σ5,5
a

= σ2
aω

 . The observation’s dimensionality was reduced
by two by omitting the target location, yielding ot = [ovt, oωt

]⊤. The
observation model H in Eq. 2 then becomes a 2 × 5 matrix filled
with 0, except H1,4 = H2,5 = 1. Let Σo = diag(σ2

o
) denote the Gaussian

observation noise covariance. Any 0 variance components were re-
placed with a minimal variance of ϵ for Σa, Σo.

fenv at bt−1 =�(̂s
t−1, Pt−1) was locally linearized as

The EKF’s prediction step (Eq. 4) uses at−1 to get a predicted be-
lief bt∣t−1. Note that given our At−1, velocity variance elements in the
prediction P4,4

t∣t−1
, P5,5

t∣t−1
 only depend on Σa and independent of Pt−1.

The EKF’s update step (Eq. 5) uses bt∣t−1 and ot to get the final
belief bt =�(̂st , Pt) . Kt is known as the Kalman gain which specifies
the relative weights of prediction and observation. Mathematically,
because only velocity components are observable and predicted ve-
locity components are independent of Pt−1, Kt is determined solely
by Σa and Σo and is independent of Pt−1 in our task

RNN belief
When the transition and the observation probabilities T, O are un-
known to the agent, to support decision- making, an internal belief
could be formed via gradient- based optimization. We used RNNs to
integrate partial observations ot and motor efference copies at−1 over
time, trained end- to- end using the RL objective in our task (see be-
low). RNN’s belief bt resides in its hidden state ht. Each RNN main-
tains a hidden state ht = fRNN(ot, at−1, ht−1) or ht = fRNN(ot, at−1, ht−1,
at) depending on its inputs (Fig. 8, A and B). bt encoded implicitly in
ht is used by other neurons to compute at or Qt in the actor or critic.

RL with EKF beliefs
Our RL algorithm for training the EKF agent with an EKF belief (used
for Fig. 2B) is based on an actor- critic approach called the twin delayed
deep deterministic policy gradient (TD3) (29), referred to as EKF- TD3.
We first computed beliefs using EKF as described above and then
trained neural networks to use those beliefs as inputs to guide actions.
Networks
Each agent has two critics with identical architectures but different ini-
tial weights to address the maximization bias in value estimation [see
the “Critic update” section below and (51)], although in the Results we
only showed one of the critics used to train the actor to generate ac-
tions. Let it denote the state- related inputs. All neural networks in an
EKF agent were feed- forward, provided with the mean and covariance
of bt computed by the EKF, i.e., it = {̂st , Pt} . The actor and two critics
are ̂at = πμ(it) , Qt1 = 𝒬ν1(it, at), and Qt2 = 𝒬ν2(it, at), where μ, ν1, and ν2
denote neural parameters.
Exploration
Since our actor is a deterministic function, to realize exploration in
training, we combined the actor’s output ̂at = πμ(it) with a zero- mean
Gaussian exploration noise βt and clipped the sum to the box [−1,1]

To ensure that the agent can properly stop without noise vari-
ability, we let βt = 0 if ̂at is below the action threshold. After training,
we also let βt = 0, so at = ât.
Experience replay
Instead of learning on the current trial, we used off- policy RL by
storing experience in a replay buffer ℬ and frequently sampling data
from ℬ to train the agent. At each state st, the EKF computed it
for the actor to generate at following Eq. 6. The agent observed the

bt =
1

C
O(ot ∣ st) ∫

st−1

T(st ∣ st−1, at−1)bt−1 dst−1 (3)

At−1 =
�fenv

�ŝt−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 − ŝvt−1Δtsin̂sθt−1 Δtcoŝsθt−1 0

0 1 ŝvt−1Δtcoŝsθt−1 Δtsin̂sθt−1 0

0 0 1 0 Δt

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

�s
t∣t−1 = fenv(�st−1, at−1)

P
t∣t−1=A

t−1Pt−1A
⊤

t−1
+Σ

a

(4)

K
t
=P

t∣t−1H
⊤(HP

t∣t−1H
⊤+Σ

o
)−1

�s
t
=�s

t∣t−1+K
t
(o

t
−H�s

t∣t−1)

Pt = (I5−KtH)Pt∣t−1

(5)

at = clip(ât +β
t
, −1, 1), β

t
∼�(0, σ2

exp
I2) (6)

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

18 of 21

reward rt, next input it+1, and trial completion flag Dt and stored the
one- step transition tuple (it, at, rt, it+1, Dt) in ℬ. The buffer ℬ had a
capacity of 1.6 × 106 transitions, storing data on a first- in, first- out
(FIFO) basis. Furthermore, we augmented the experience by also
storing the mirror transition (̂�t , ât , rt , �̂t+1,Dt) generated by reflect-
ing the original data across the y axis.
Target networks
The learning of value in TD3 is akin to deep Q- learning (34). Using
the Bellman equation, ideally, the agent can learn to estimate the
value 𝒬νj(it, at) by regressing the learning target yt = rt + γ𝒬νj[it+1,
πμ(it+1)], i.e., the one- step bootstrapping of the value after receiving
the reward rt, observing the next input it+1, and estimating the next
action πμ(it+1). One stability issue here is that the neural parameters
for optimization are also used to construct the learning target yt,
which changes at each learning step. To obtain a more stable yt, we
thus maintained a copy of actor and critic networks with more slowly
changing parameters μ′ and νj′ used in yt, referred to as target actor
and critic networks. These parameters were initialized to be the
same as μ, νj and passed through an exponential moving average

We used τ = 0.005.
Critic update
We sampled a batch of M = 256 transitions from the buffer each time

where the temporal subscript is omitted, and i′(k) denotes the next
input after i(k). The next action given i′(k) was estimated by the target
actor network as

where β′(k) is small zero- mean Gaussian noise clipped to [−0.1,0.1]
to smooth the action estimation.

The learning target y(k) used the smaller value estimation be-
tween two target critics to reduce the maximization bias (51) and
was truncated at the end of each trial [D(k) = 1]. The learning objec-
tive of the two critics, J(νj), j = 1,2, was to regress the learning target
y(k), defined as

The gradient ∇νjJ(νj) was computed by BP. Critic parameters νj were
updated (see the “Agent training” section below for optimizers) using
∇νjJ(νj) to minimize J(νj).
Actor update
The actor’s parameter μ was updated once for every two critic up-
dates. The actor’s learning objective J(μ) was to maximize the value
of the first critic, defined as

The gradient ∇μJ(μ) was computed by BP. The actor parameter μ
was updated using ∇μJ(μ) to maximize J(μ). Note that the critic pa-
rameter ν1 was not updated here. A diagram illustrating the critic
and actor update is shown in fig. S1 (A and B).

RL with RNN beliefs
We developed a memory- based TD3 model leveraging RNNs to
construct a form of internal beliefs to tackle POMDPs, referred to as
RNN- TD3. All agents except the EKF agent were trained by this
algorithm.
Networks
Let it = {ot, at−1} and ht denote the state- related inputs and the RNN’s
hidden state. The actor and two critics are {ât , h

μ

t } = πμ(it , h
μ

t−1
) ,

{Qtj
, h

νj

t } = �νj
(it , at , h

νj

t−1
), j = 1, 2 , where networks’ beliefs are im-

plicitly encoded in all ht evolving over time. At the beginning of
each trial, ht−1 and at−1 were initialized to zeros. For simplicity, we
drop ht in our notations for all networks’ outputs.
Exploration
Similar to that of EKF- TD3 (Eq. 6), we added zero- mean Gaussian
exploration noise to the output of the actor ât = πμ(it , h

μ

t−1
) if the

output is above the action threshold

After training, we let βt = 0.
Experience replay
Similar to that of EKF- TD3 but rather than storing one- step transi-
tion tuples, the replay buffer ℬ stored the whole trajectory for each
trial of N time steps

and its mirror image, because RNNs have hidden states ht generally
depend on the entire history of inputs, not just the most recent ones.
Each action was obtained using Eq. 11. The FIFO buffer had a capac-
ity of 105 trajectories.
Target networks
Same as that of EKF- TD3.
Critic update
Similar to that of EKF- TD3, but critics here also needed to learn the
temporal structure. Since the trial duration N varies across trials, we
first sampled a trial duration Ñ from the buffer ℬ and then sampled
a batch of M = 16 trajectories with the same duration Ñ

where i�(k)
t

= i
(k)

t+1
 . The next action a′(k)

t
 , the learning target y(k)t , and

the learning objective of the two critics J(νj) were

μ�←τμ+ (1−τ)μ�

ν�
j
←τνj+ (1−τ)ν�

j

(7)

[
i
(k), a(k), r(k), i�(k),D(k)

]
k=1,2,⋯,M

∼ℬ

(8)

y(k)= r(k)+
[
1−D(k)

]
γmin
j=1,2

�νj
�

[
i
�(k), a�(k)

]

J(νj)=
1

M

∑M

k=1

{
y(k)−�νj

[
i
(k), a(k)

]}2
(9)

J(μ) =
1

M

M∑
k=1

�ν1

{
i
(k), πμ

[
i
(k)
]}

(10)

at = clip(ât +β
t
, −1, 1), β

t
∼� (0, σ2

exp
I2) (11)

(i0, a0, r0,D0, ⋯ , iN−1, aN−1, rN−1,DN−1)

[
i
(k)

t
, a

(k)

t
, r

(k)

t
, i
�(k)
t

,D
(k)

t

]k=1,⋯,M

t=0,⋯,Ñ−1
∼ℬ

(12)

y(k)t = r(k)t +
[
1−D(k)

t

]
γmin
j=1,2

�νj�

[
i
�(k)
t , a

�(k)
t , h

νj
�(k)

t

]

J(νj)=
1

MÑ

∑M

k=1

∑Ñ−1

t=0

{
y(k)t −�νj

[
i
(k)
t , a

(k)
t , h

νj(k)

t−1

]}2

(13)

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

19 of 21

The gradient ∇νjJ(νj) was computed by BP through time (BPTT).
Critic parameters νj were updated using ∇νjJ(νj) to minimize J(νj).
Actor update
Similar to that of EKF- TD3, but the actor here needed to learn the
temporal structure. The actor’s learning objective J(μ) was

The gradient ∇μJ(μ) was computed by BPTT. The actor parame-
ters μ were updated using ∇μJ(μ) to maximize J(μ).

Agent training
All network parameters μ, ν1, and ν2 were updated by the Adam
optimizers (52). Optimizer parameters were set as follows: learning
rates annealed from 3 × 10−4 to 5 × 10−5, exponential decay rates for
the first and second moment estimates = 0.9,0.999, a constant added
in denominators for numerical stability =1.5 × 10−4, and weight de-
cay = 0. The critics were updated once for every c = 4 interactions
with the environment. The actor was updated once for every two
critic updates.

During training, we periodically validated the agent’s perfor-
mance with 300 validation trials and used the moments when the
agent achieved 20 and 80% accuracy to split the whole training
course into three phases. The learning rates for the actor and critics,
the exploration noise σexp (Eqs. 6 and 11), and the observation noise
σo (Eq. 2) in each phase were set as follows: In phase 1, learning rates
were 3 × 10−4, σexp = 0.8, and σo = 0. In phase 2, learning rates were
3 × 10−4, σexp = 0.5, and σo = αoG, where αo is defined in the training
task. In phase 3, learning rates were 5 × 10−5, σexp = 0.4, and σo =
αoG. Training was stopped after the agent had experienced 105 trials
after phase 1 (extensive training) for Fig. 8 and figs. S2 (E and F) and
S7 to S9 or 104 trials after phase 1 (default training) for the remain-
ing agents. We summarize the EKF/RNN- TD3 algorithms in algo-
rithm S1 and hyperparameters in table S1.

Agent testing and TD errors
During testing, the target networks were no longer used. The trained
actor πμ was used to interact with the environment and generate
transition tuples (it , at , rt , i′t ,Dt) for each t. No exploration noise was
added to the output of the actor.

The TD error shown in analyses is similar to the learning objec-
tive for critics (Eq. 13), except that the target networks were replaced
with the trained networks, and only the first critic was used. Specifi-
cally, for each t, the next action is a�

t
= πμ(i

�
t
, h

μ

t) , and the TD error is
given by

Agent selection
After training phase 1, in every 500 training trials, we saved neural
parameters of each network. To fairly compare agents’ performance
in each task (training, gain, and perturbation), we tested all sets of
stored parameters (without exploration noise) for each task using one
or multiple test sets, with 500 trials (for agents that underwent default
training) or 300 trials (for agents that underwent extensive training)
each. We then endowed each agent with the neural parameters that
allowed it to achieve the highest reward rate averaged across test sets
for each task.

The test sets used for each task are as follows. Training task: One
test set with the training task’s parameters. Gain task: Three or four
test sets with the gain = 1×,1.5×,2× (default training) or 1×,2×,3×,4×
(extensive training). Perturbation task: Two test sets for agents that
underwent default training, one without perturbation and the other
with perturbation parameters identical to those in Fig. 6C. For
agents that underwent extensive training, an additional test set was
included, with perturbation ranges identical to those in Fig. 8D.

Agent architectures
Although all agents had two architecturally identical critics, we only
showed one in Figs. 1E and 8A. All RNNs were implemented as long
short- term memory (LSTM) networks (53), as we observed that agents
with LSTMs were much easier to train than those with vanilla RNNs.
Agents with vanilla RNNs encountered learning failures most of the
time. In contrast to LSTMs, the training of vanilla RNNs proves to be
unstable, primarily because they struggle with managing long- term
dependencies and are susceptible to vanishing/exploding gradient
problems (53). These inherent difficulties may be exacerbated with RL,
as the learning target for the critic network is bootstrapped by the critic
itself (see above). Consequently, critic updates are preferable to be
stable to ensure a more stable learning target. Previous work using
RNNs within critics consistently chose RNNs with gating mechanisms
(39, 54–56). It remains a prospect for future research to investigate the
impact of the gating inductive bias in RL.

All MLP layers linearly transformed inputs and then applied recti-
fied linear unit (ReLU) nonlinearities. The output of critics Qt was pro-
duced by a linear unit without any nonlinearity; the linear and angular
control outputs of the actors at were bounded to [−1,1] by hyperbolic
tangent nonlinearities. In the holistic critic/actor (Fig. 8, A and B),
there were 220 LSTM units. In all other architectures in Fig. 8 (A and
B), each RNN module had 128 LSTM units, and each MLP module
contained two layers with 300 ReLU units in each. All architectures,
as a result, had a similar number of parameters (fig. S9A).

The EKF agent’s actor and two critics used the same architecture
consisting of an MLP module with two layers, each with 300 ReLU
units. The holistic EKF agent used an actor architecture identical to
the EKF agent’s actor and a holistic critic architecture.

No generalization hypothesis
For each gain trial with a gain nG for n > 1 or for each perturbation
trial with nonzero perturbation velocities pvt, pwt, the hypothetical no
generalization trajectory was obtained as follows. We first recorded
the agent/monkey’s sequential actions (a0, a1, …, aN−1) in the training
task (1× gain, no perturbations) navigating to the same target (for
agents) or the closest target in the dataset (for monkeys). We then
regenerated a new trajectory using (a0, a1, …, aN−1) following the en-
vironmental transition (Eq. 1, process noise ηt = 0), but with the gain
multiplier n for the gain task or the perturbation velocities pvt, pwt for
the perturbation task.

Under/overshooting definition using idealized
circular trajectories
To determine when an agent or a monkey under- or overshot the
target in the gain task, we asked whether its stop location exceeded
the target location in the distance along their corresponding ideal-
ized circular trajectories. Specifically, given an arbitrary endpoint
[�x, �y]⊤ , the circular trajectory connecting it from a forward heading
(90°, initial head direction) at the origin (start location) has a radius

J(μ)=
1

MÑ

M∑
k=1

Ñ−1∑
t=0

�ν1

{
i
(k)
t
, πμ

[
i
(k)
t , h

μ(k)

t−1

]
, h

ν1(k)

t−1

}
(14)

∣ rt + (1−Dt)γ�ν1
(i�
t
, a�

t
, h

ν1
t
)−�ν1

(it , at , h
ν1
t−1

) ∣

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

20 of 21

as a function of this point R̃(x̃, ỹ) . The arc length of this trajectory is
a function

We deemed the agent’s stop location [sxN−1, syN−1]⊤ to have over-
shot the target [gx, gy]⊤ if L(sxN−1, syN−1) > L(gx, gy), otherwise it
undershot.

Trajectory length and curvature
We approximated the length l̃ and the curvature k̃t of a trajectory
(sxt, syt)t=0,⋯,N−1 as follows

where first derivatives sxt
′, syt

′ and second derivatives sxt
′′, syt

′′ were
estimated using first- order one- sided differences for the first and last
points and second- order central differences for interior points. In
each trial, we excluded curvatures that surpassed the 95th percentile
at any step, considering them as outlier values. Note that the monkeys’
trajectories here were downsampled to have the same 0.1- s time step
as the agents’ trajectories.

Spatial tuning
We obtained the approximate spatial tuning of each neuron by
linearly interpolating its activity and the agent’s x and y location
using data from each step across trials, followed by a convolution
over the 2D space using a boxcar filter with a height and a
width of 40 cm.

Neural decoding
While agents were being tested, we recorded their sensory, latent,
and motor variables for the analyses in Fig. 1L and fig. S1F and their
positions sxt, syt for all other decoding analyses. We also recorded
their neural activities in each module for both their actors and crit-
ics. Let S denote a partitioned matrix where rows are time steps and
columns are decoding target variables, e.g., [sx, sy] for agent’s posi-
tions. Recorded neural activities X were concatenated over time,
where rows are time steps and columns are units. A linear decoder
regressed S on X, whose partitioned parameters for all decoding
variables W were obtained by the ridge estimator following

where λ is a penalty term chosen from {0.1,1,10} by cross- validation.
We always used 70% trials in the dataset to train the decoder and
used the remaining 30% trials to test the decoder’s predictions.

The decoding error of the belief in each trial was defined as

where ŝxt , ŝyt are predicted x and y positions.

Statistical analysis
All agents were trained with eight different random seeds, which
determined the initialized neural network parameters and random
variables in training (e.g., process and observation noises, agent’s
initial state, exploration noise, and sampling from the buffer). All
analyses for agents included data from training runs with all ran-
dom seeds unless otherwise noted. We reported mean, SD, SEM, or
confidence interval (CI) throughout the paper. All correlations were
quantified by Pearson’s r.

In all violin plots, we determined upper and lower whiskers fol-
lowing q1 − whis · (q3 − q1) and q1 + whis · (q3 − q1), where q1 and
q3 are the first and third quartiles, and whis = 1.5 (57). We did not
plot outliers beyond the whisker range for better visualization, but
we did not exclude them in quantification.

Supplementary Materials
This PDF file includes:
Supplementary text
Figs. S1 to S9
table S1
Algorithm S1
References

REFERENCES AND NOTES
 1. t. e. Behrens, t. h. Muller, J. c. Whittington, S. Mark, A. B. Baram, K. l. Stachenfeld,

Z. Kurth- nelson, What is a cognitive map? Organizing knowledge for flexible behavior.
Neuron 100, 490–509 (2018).

 2. d. hume, An Enquiry Concerning Human Understanding (Routledge, 2016).
 3. e. c. tolman, cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).
 4. h. F. harlow, the formation of learning sets. Psychol. Rev. 56, 51–65 (1949).
 5. J. B. tenenbaum, c. Kemp, t. l. Griffiths, n. d. Goodman, how to grow a mind: Statistics,

structure, and abstraction. Science 331, 1279–1285 (2011).
 6. F. h. Sinz, X. Pitkow, J. Reimer, M. Bethge, A. S. tolias, engineering a less artificial

intelligence. Neuron 103, 967–979 (2019).
 7. A. M. Zador, A critique of pure learning and what artificial neural networks can learn from

animal brains. Nat. Commun. 10, 3770 (2019).
 8. A. Goyal, Y. Bengio, inductive biases for deep learning of higher- level cognition. Proc. R.

Soc. A 478, 20210068 (2022).
 9. S. Mittal, Y. Bengio, G. lajoie, is a modular architecture enough? Adv. Neural. Inf. Process.

Syst. 35, 28747–28760 (2022).
 10. J. Peters, d. Janzing, B. Schölkopf, Elements of Causal Inference: Foundations and Learning

Algorithms (the Mit Press, 2017).
 11. Y. Bengio, t. deleu, n. Rahaman, R. Ke, S. lachapelle, O. Bilaniuk, A. Goyal, c. Pal, A

meta- transfer objective for learning to disentangle causal mechanisms. arXiv:1901.10912
[cs.lG] (2019).

 12. P. W. Battaglia, J. B. hamrick, v. Bapst, A. Sanchez- Gonzalez, v. Zambaldi, M. Malinowski,
A. tacchetti, d. Raposo, A. Santoro, R. Faulkner, c. Gulcehre, F. Song, A.Ballard, J. Gilmer,
G. dahl, A. vaswani, K. Allen, c. nash, v. langston, c. dyer, n. heess, d. Wierstra, P. Kohli,
M. Botvinick, O. vinyals, Y. li, R. Pascanu, Relational inductive biases, deep learning, and
graph networks. arXiv:1806.01261 [cs.lG] (2018).

 13. d. h. Wolpert, W. G. Macready, no free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1, 67–82 (1997).

 14. M. A. Bertolero, B. t. Yeo, M. d'esposito, the modular and integrative functional
architecture of the human brain. Proc. Natl. Acad. Sci. U.S.A. 112, e6798–e6807
(2015).

 15. S. Genon, A. Reid, R. langner, K. Amunts, S. B. eickhoff, how to characterize the function
of a brain region. Trends Cogn. Sci. 22, 350–364 (2018).

 16. d. Meunier, R. lambiotte, A. Fornito, K. ersche, e. t. Bullmore, hierarchical modularity in
human brain functional networks. Front. Neuroinform. 3, 37 (2009).

 17. e. Bullmore, O. Sporns, complex brain networks: Graph theoretical analysis of structural
and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

 18. S. Grossberg, the complementary brain: Unifying brain dynamics and modularity. Trends
Cogn. Sci. 4, 233–246 (2000).

 19. Y. lecun, Y. Bengio, G. hinton, deep learning. Nature 521, 436–444 (2015).
 20. K. J. lakshminarasimhan, e. Avila, e. neyhart, G. c. deAngelis, X. Pitkow, d. e. Angelaki,

tracking the mind’s eye: Primate gaze behavior during virtual visuomotor navigation
reflects belief dynamics. Neuron 106, 662–674.e5 (2020).

L(x̃, ỹ) = 2r̃arcsin

⎛
⎜⎜⎜⎝

�
x̃2 + ỹ2

2r̃

⎞
⎟⎟⎟⎠
, r̃ = R̃(x̃, ỹ) =

x̃2 + ỹ2

2x̃

l̃ =
∑N−2

t=0

√
(sxt+1 − sxt)

2+ (syt+1 − syt)
2

k̃t =
∣ sxt

�syt
�� − syt

�sxt
�� ∣

(sxt
�2+ syt

�2)
3

2

W = (X⊤X+λI)−1X⊤S

1

N

N−1∑
t=0

∥ ŝxt − sxt , ŝyt − syt∥2

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

https://arxiv.org/abs/1901.10912
https://arxiv.org/abs/1806.01261

Zhang et al., Sci. Adv. 10, eadk1256 (2024) 19 July 2024

S c i e n c e A d v A n c e S | R e S e A R c h A R t i c l e

21 of 21

 21. K. J. lakshminarasimhan, e. Avila, X. Pitkow, d. e. Angelaki, dynamical latent state
computation in the male macaque posterior parietal cortex. Nat. Commun. 14, 1832 (2023).

 22. M. Watabe- Uchida, n. eshel, n. Uchida, neural circuitry of reward prediction error. Annu.
Rev. Neurosci. 40, 373–394 (2017).

 23. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (Mit press, 2018).
 24. R. e. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82,

35–45 (1960).
 25. J.- P. noel, B. caziot, S. Bruni, n. e. Fitzgerald, e. Avila, d. e. Angelaki, Supporting

generalization in non- human primate behavior by tapping into structural knowledge:
examples from sensorimotor mappings, inference, and decision- making. Prog. Neurobiol.
201, 101996 (2021).

 26. P. Alefantis, K. J. lakshminarasimhan, e. Avila, J.- P. noel, X. Pitkow, d. e. Angelaki, Sensory
evidence accumulation using optic flow in a naturalistic navigation task. J. Neurosci. 42,
5451–5462 (2022).

 27. J.- P. noel, e. Balzani, e. Avila, K. J. lakshminarasimhan, S. Bruni, P. Alefantis, c. Savin,
d. e. Angelaki, coding of latent variables in sensory, parietal, and frontal cortices during
closed- loop virtual navigation. eLife 11, e80280 (2022).

 28. l. P. Kaelbling, M. l. littman, A. R. cassandra, Planning and acting in partially observable
stochastic domains. Artif. Intell. 101, 99–134 (1998).

 29. S. Fujimoto, h. hoof, d. Meger, Addressing function approximation error in actor- critic
methods. Proc. Mach. Learn. Res. 80, 1587–1596 (2018).

 30. e. Balzani, K. lakshminarasimhan, d. Angelaki, c. Savin, efficient estimation of neural
tuning during naturalistic behavior. Adv. Neural. Inf. Process. Syst. 33, 12604–12614 (2020).

 31. G. A. einicke, l. B. White, Robust extended Kalman filtering. IEEE Trans. Signal Process. 47,
2596–2599 (1999).

 32. c. M. Bishop, training with noise is equivalent to tikhonov regularization. Neural Comput.
7, 108–116 (1995).

 33. n. R. Ke, A. didolkar, S. Mittal, A. Goyal, G. lajoie, S. Bauer, d. Rezende, Y. Bengio, M. Mozer,
c. Pal, Systematic evaluation of causal discovery in visual model based reinforcement
learning. arXiv:2107.00848 [stat.Ml] (2021).

 34. v. Mnih, K. Kavukcuoglu, d. Silver, A. A. Rusu, J. veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, c. Beattie, A. Sadik, i. Antonoglou,
h. King, d. Kumaran, d. Wierstra, S. legg, d. hassabis, human- level control through deep
reinforcement learning. Nature 518, 529–533 (2015).

 35. K. l. Stachenfeld, M. M. Botvinick, S. J. Gershman, the hippocampus as a predictive map.
Nat. Neurosci. 20, 1643–1653 (2017).

 36. A. Barreto, d. Borsa, J. Quan, t. Schaul, d. Silver, M. hessel, d. Mankowitz, A. Zidek,
R. Munos, transfer in deep reinforcement learning using successor features and
generalised policy improvement. Proc. Mach. Learn. Res. 80, 501–510 (2018).

 37. J. X. Wang, Z. Kurth- nelson, d. Kumaran, d. tirumala, h. Soyer, J. Z. leibo, d. hassabis,
M. Botvinick, Prefrontal cortex as a meta- reinforcement learning system. Nat. Neurosci.
21, 860–868 (2018).

 38. M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth- nelson, c. Blundell, d. hassabis, Reinforcement
learning, fast and slow. Trends Cogn. Sci. 23, 408–422 (2019).

 39. J. A. hennig, S. A. Romero Pinto, t. Yamaguchi, S. W. linderman, n. Uchida, S. J. Gershman,
emergence of belief- like representations through reinforcement learning. PLoS Comput.
Biol. 19, e1011067 (2023).

 40. J. Merel, d. Aldarondo, J. Marshall, Y. tassa, G. Wayne, B. Ölveczky, deep neuroethology of
a virtual rodent. arXiv:1911.09451 [q- bio.nc] (2019).

 41. v. Mikulik, G. delétang, t. McGrath, t. Genewein, M. Martic, S. legg, P. Ortega,
Meta- trained agents implement bayes- optimal agents. Adv. Neural. Inf. Process. Syst. 33,
18691–18703 (2020).

 42. S. h. Singh, F. van Breugel, R. P. Rao, B. W. Brunton, emergent behaviour and neural
dynamics in artificial agents tracking odour plumes. Nat. Mach. Intell. 5, 58–70 (2023).

 43. t. Xu, O. Barak, implementing inductive bias for different navigation tasks through
diverse rnn attractors. arXiv:2002.02496 [q- bio.nc] (2020).

 44. A. Zador, S. escola, B. Richards, B. Ölveczky, Y. Bengio, K. Boahen, M. Botvinick,
d. chklovskii, A. churchland, c. clopath, J. d. carlo, S. Ganguli, J. hawkins, K. Körding,
A. Koulakov, Y. l. cun, t. lillicrap, A. Marblestone, B. Olshausen, A. Pouget, c. Savin,

t. Sejnowski, e. Simoncelli, S. Solla, d. Sussillo, A. S. tolias, d. tsao, catalyzing next-
generation artificial intelligence through neuroAi. Nat. Commun. 14, 1597 (2023).

 45. P. W. Glimcher, Understanding dopamine and reinforcement learning: the dopamine
reward prediction error hypothesis. Proc. Natl. Acad. Sci. U.S.A. 108, 15647–15654 (2011).

 46. B. B. doll, d. A. Simon, n. d. daw, the ubiquity of model- based reinforcement learning.
Curr. Opin. Neurobiol. 22, 1075–1081 (2012).

 47. d. Bennett, Y. niv, A. J. langdon, value- free reinforcement learning: Policy optimization as
a minimal model of operant behavior. Curr. Opin. Behav. Sci. 41, 114–121 (2021).

 48. W.- c. Jiang, S. Xu, J. t. dudman, hippocampal representations of foraging trajectories
depend upon spatial context. Nat. Neurosci. 25, 1693–1705 (2022).

 49. c. dan, B. K. hulse, R. Kappagantula, v. Jayaraman, A. M. hermundstad, A neural circuit
architecture for rapid behavioral flexibility in goal- directed navigation. bioRxiv 456004
[Preprint] (2021). https://doi.org/10.1101/2021.08.18.456004.

 50. M. hadjiosif, J. W. Krakauer, A. M. haith, did we get sensorimotor adaptation wrong?
implicit adaptation as direct policy updating rather than forward- model- based learning.
J. Neurosci. 41, 2747–2761 (2021).

 51. S. thrun, A. Schwartz, issues in using function approximation for reinforcement learning,
in Proceedings of the 1993 Connectionist Models Summer School (Psychol. dent. Press,
2014), pp. 255–263.

 52. d. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 [cs.lG]
(2014).

 53. S. hochreiter, J. Schmidhuber, long short- term memory. Neural Comput. 9, 1735–1780
(1997).

 54. M. hausknecht, P. Stone, deep recurrent q- learning for partially observable mdps.
arXiv:1507.06527 [cs.lG] (2015).

 55. B. Bakker, Reinforcement learning with long short- term memory. Adv. Neural. Inf. Process.
Syst. 14, 1475–1482 (2002).

 56. B. Bakker, Reinforcement learning by backpropagation through an lStM model/critic, in
2007 IEEE International Symposium on Approximate Dynamic Programming and
Reinforcement Learning (ieee, 2007), pp. 127–134.

 57. J. W. tukey, Exploratory Data Analysis (Springer, 1977).
 58. h. tang, R. houthooft, d. Foote, A. Stooke, X. chen, Y. duan, J. Schulman, F. deturck,

P. Abbeel, #exploration: A study of count- based exploration for deep reinforcement
learning. Adv. Neural. Inf. Process. Syst. 30, 2750–2759 (2017).

 59. A. Stavropoulos, K. J. lakshminarasimhan, J. laurens, X. Pitkow, d. e. Angelaki, influence
of sensory modality and control dynamics on human path integration. eLife 11, e63405
(2022).

 60. A. Stavropoulos, K. J. lakshminarasimhan, d. e. Angelaki, Belief embodiment through eye
movements facilitates memory- guided navigation. bioRxiv 554107 [Preprint] (2023).
https://doi.org/10.1101/2023.08.21.554107.

Acknowledgments: We express our greatest appreciation to K. lakshminarasimhan for useful
discussions. Funding: this work was supported by national institutes of health grants U19
nS118246 (d.e.A.) and R01 nS120407 (X.P.). Author contributions: conceptualization and
methodology: R.Z., X.P., and d.e.A. investigation: R.Z. visualization: R.Z. and X.P. Supervision:
X.P. and d.e.A. Writing—original draft: R.Z. Writing—review and editing: R.Z., X.P., and d.e.A.
Funding acquisition: X.P. and d.e.A. Competing interests: X.P. is a founder of Upload Ai llc, a
company in which he has related financial interests. All other authors declare that they have
no competing interests. Data and materials availability: All data needed to evaluate the
conclusions in the paper are present in the paper and/or the Supplementary Materials. to
reproduce the results and figures, codes, data, and detailed instructions are available on
Github https://github.com/ryzhang1/inductive_bias. the codes have also been archived at
https://zenodo.org/doi/10.5281/zenodo.10957521, and the data have been archived at https://
doi.org/10.5061/dryad.jdfn2z3j3.

Submitted 3 August 2023
Accepted 14 June 2024
Published 19 July 2024
10.1126/sciadv.adk1256

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

https://arxiv.org/abs/2107.00848
https://arxiv.org/abs/1911.09451
https://arxiv.org/abs/2002.02496
http://dx.doi.org/10.1101/2021.08.18.456004
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1507.06527
http://dx.doi.org/10.1101/2023.08.21.554107
https://github.com/ryzhang1/Inductive_bias
https://zenodo.org/doi/10.5281/zenodo.10957521
https://doi.org/10.5061/dryad.jdfn2z3j3
https://doi.org/10.5061/dryad.jdfn2z3j3

	Inductive biases of neural network modularity in spatial navigation
	INTRODUCTION
	RESULTS
	RL agents trained to navigate using partial and noisy sensory cues
	Different architectures, different beliefs and actions
	Gain task: Generalization to previously unencountered sensorimotor mappings
	Generalization in the gain task, facilitated by agents’ belief accuracy
	Perturbation task: Generalization to passive motions, facilitated by belief accuracy
	Generalization contingent on learned Kalman gain
	More architectures using less specialized modules

	DISCUSSION
	Reasons for the benefits of modularization
	Generalization but NFL
	Limitation and future directions

	MATERIALS AND METHODS
	Task
	Task modeling
	State
	Action
	Transition
	Reward
	Done
	Observation

	Task parameters
	Training task
	Gain task
	Perturbation task

	Belief modeling
	Recursive Bayesian estimation
	EKF belief
	RNN belief

	RL with EKF beliefs
	Networks
	Exploration
	Experience replay
	Target networks
	Critic update
	Actor update

	RL with RNN beliefs
	Networks
	Exploration
	Experience replay
	Target networks
	Critic update
	Actor update

	Agent training
	Agent testing and TD errors
	Agent selection
	Agent architectures
	No generalization hypothesis
	Under/overshooting definition using idealized circular trajectories
	Trajectory length and curvature
	Spatial tuning
	Neural decoding
	Statistical analysis

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

