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N E U R O S C I E N C E

Inductive biases of neural network modularity in 
spatial navigation
Ruiyi Zhang1*, Xaq Pitkow2,3,4,5,6†, Dora E. Angelaki1,7†

The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized 
modules that match the task structure. We hypothesize that this architecture enables better learning and generaliza-
tion than architectures with less specialized modules. To test this, we trained reinforcement learning agents with 
various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture 
that segregates computations of state representation, value, and action into specialized modules, achieved better 
learning and generalization. Its learned state representation combines prediction and observation, weighted by 
their relative uncertainty, akin to recursive Bayesian estimation. This agent’s behavior also resembles macaques’ be-
havior more closely. Our results shed light on the possible rationale for the brain’s modularity and suggest that arti-
ficial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.

INTRODUCTION
Accurate generalization beyond training tasks requires correct prior 
knowledge of the task structure (1). However, as Hume (2) famously 
highlighted in his “problem of induction,” one’s prior knowledge can 
be fallacious, leading to unsuccessful generalization. Nevertheless, 
animals have the ability to efficiently acquire the structure of their 
daily tasks as prior knowledge for unencountered tasks outside their 
typical domain (1, 3–5). This remarkable ability may stem from the 
brain’s innate biases evolved for their daily tasks (1, 6, 7).

In theory, numerous solutions exist for a given task. For instance, 
one solution may involve comprehending the task’s underlying 
structure, i.e., understanding how data are generated from latent 
variables (8–11), whereas another could rely on memorizing all 
input- output pairs. Although both can produce positive results with 
sufficient training, a solution that understands the task structure is 
expected to exhibit greater data efficiency in mastering the training 
task and can generalize to unseen, structurally similar tasks; in con-
trast, rote memorization requires seeing all training examples and 
lacks generalizability. Every learning system for a task, whether bio-
logical or artificial, has a bias that favors some solutions over others, 
known as the inductive bias. For a neural network, its architecture 
defines a crucial aspect of this bias (6, 8, 12). To prioritize solutions 
that learn the task structure and support generalization, the induc-
tive bias must be tailored to the specific tasks of interest, as there is 
no universal inductive bias suitable for all tasks [no- free- lunch (NFL) 
theorem] (13). Although we understand why inductive biases are 
important, it is still unclear how to tailor a useful one.

The remarkable ability of animals to rapidly learn and generalize 
in natural tasks suggests that their brains are indeed endowed with 
suitable inductive biases for these tasks. One perspective suggests that 
the brain may have evolved an inductive bias for a modular architecture 

featuring functionally specialized modules (14–18). Each module 
specializes in a specific aspect or a subset of task variables, collectively 
covering all demanding computations of the task. We hypothesize 
that this architecture enables higher efficiency in learning the struc-
ture of natural tasks and better generalization in tasks with a similar 
structure than those with less specialized modules.

Previous theoretical works (8–11) have outlined the potential ratio-
nale for this architecture: Data generated from natural tasks typically 
stem from the latent distribution of multiple task variables. Decom-
posing the task and learning these variables in distinct modules allow 
a better understanding of the relationships among these variables and 
therefore the data generation process. This modularization also pro-
motes hierarchical computation, where independent variables are ini-
tially computed and then forwarded to other modules specialized in 
computing dependent variables. Hierarchical computation is a crucial 
factor contributing to the success of deep neural networks (19). Note 
that “modular” may take on different meanings in different contexts. 
Here, it specifically refers to architectures with multiple modules, each 
specializing in one or a subset of the desired task variables. Architectures 
with multiple modules lacking enforced specialization in computing 
variables do not meet the criteria for modular in our context.

To test our hypothesis, it is essential to select a natural task and 
compare a modular architecture designed for the task against alter-
native architectures. We chose a naturalistic virtual navigation task 
previously used to investigate the neural computations underlying 
macaques’ flexible behaviors (20, 21), where subjects are required to 
steer toward a transiently visible target using optic flow cues. Subjects 
benefit from mentally computing multiple variables and understand-
ing their dependencies, including an internal state representation of 
the outside world (a “belief ”) given partial and noisy sensory cues, 
the motor commands (actions) used to control a joystick for naviga-
tion based on this belief, and the value of the action for the belief 
state (22).

We therefore designed a modular architecture tailored for this task, 
comprising dedicated modules that facilitate the recursive computa-
tion of beliefs using observations and predictions. It also includes 
specialized modules to compute actions and values based on the 
computed beliefs. This design not only promotes the modular 
computation of distinct variables but also establishes a hierarchical 
computation flow reflecting the dependencies among variables (e.g., 
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action and value depend on belief). We also designed a set of alter-
native architectures for comparison, each featuring modules with 
weaker specializations for particular task variables.

To train artificial agents using these architectures, we used rein-
forcement learning (RL) (23) with sparse reward signals, similar to 
the training of macaques. We found that our modular architecture is 
better suited for mastering our task than alternative architectures. It 
demonstrated superior efficiency in learning a belief update rule, 
akin to recursive Bayesian estimation (24), compared to other archi-
tectures. The modular agent’s belief is updated by weighing the prior 
prediction from a motor efference copy against a likelihood derived 
from visual observation of states. The reliability of the two sources 
affects how these factors are combined, with the more reliable source 
assigned a higher weight. Furthermore, we will show that the learned 
control action of the modular agent reflects a more animal- like and 
efficient behavior than actions from alternative architectures.

After training, we proceeded to evaluate these agents in two pre-
viously unencountered tasks derived from the training task. One 
manipulated the sensorimotor mapping from joystick movements 
to subjects’ movements in the environment. The other randomly ap-
plied passive perturbations to subjects’ movements. Macaques dem-
onstrated immediate generalization in these tasks (25). We found 
that the modular agent exhibited accurate belief and robust control 
in these unencountered tasks, showcasing a capacity for instant gen-
eralization comparable to macaques’ ability in these tasks (21, 25). 
In contrast, agents with less- specialized modules demonstrated in-
ferior generalization performance. Furthermore, since there is no 
universal inductive bias that aids generalization across all tasks (the 
NFL theorem) (13), we also provided insights into why the modular 
agent’s knowledge acquired from training proves valuable for these 
unseen tasks, and when it does not.

RESULTS
RL agents trained to navigate using partial and noisy 
sensory cues
To study naturalistic, continuous time computations involved in 
foraging behaviors, we previously designed a virtual reality naviga-
tion task where macaques navigate to targets using sparse and tran-
sient visual cues (20). At the beginning of each trial, the subject is 
situated at the center of the ground plane (with a radius of 70 m) 
facing forward; a target is presented at a random location within the 
field of view (distance: 100 to 400 cm, angle: −35° to +35°) on the 
ground plane and disappears after 300 ms. The subject can freely 
control its linear and angular velocities with a joystick (maximum: 
200 cm/s and 90°/s, referred to as the joystick gain) to move along its 
heading in the virtual environment (Fig.  1A). The objective is to 
navigate toward the memorized target location and then stop inside 
the reward zone—a circular region centered at the target location 
with a radius of 65 cm. A reward is given only if the subject stops 
inside the reward zone. The subject’s self- location is not directly ob-
servable because there are no stable landmarks; instead, the subject 
needs to use optic flow cues on the ground plane to perceive self- 
motion and perform path integration. Each textural element of the 
optic flow, an isosceles triangle with a base and a height of 8.5 and 
18.5 cm, appears at random locations and orientations, disappearing 
after only a short lifetime (∼250 ms), making it impossible to use as 
a stable landmark. A new trial starts after the subject stops moving 
or the trial exceeds the maximum trial duration of 7 s. Given the 

target distance and joystick velocities, an optimal subject should 
reach the furthest target in around 2 s. Details of this task are de-
scribed in (20). Macaques can be trained to master this task, and all 
macaque data presented in this paper were adapted from previously 
published works (20, 21, 26, 27).

RL (23) is a reasonable framework for modeling behavior in this 
task because, like animals, RL agents can learn this task through sparse 
reward signals. We formulate this task as a partially observable Markov 
decision process (POMDP) (28) in discrete time, with continuous 
state and action spaces (Fig. 1B). At each time step t, the environment 
is in the state st (including the agent’s position and velocity and the 
target’s position). The agent takes an action at (controlling its linear 
and angular velocities) to update st to the next state st+1 following the 
environmental dynamics given by the transition probability T(st+1 ∣ st, 
at) and receives a reward rt from the environment following the re-
ward function R(st, at) (a positive scalar if the agent stops inside the 
reward zone). The task transition probabilities are Markovian because 
st+1 depends directly only on variables at t and is conditionally inde-
pendent of all previous variables.

We use a model- free actor- critic approach to learning (Fig. 1B) 
(23), with the actor and critic implemented using distinct neural 
networks. At each t, the actor receives two sources of information 
about the state: observation ot and last action at−1. It then outputs an 
action at, aiming to maximize the state- action value Qt. This value is 
a function of the state and action, representing the expected dis-
counted rewards when an action is taken at a state, and future re-
wards are then accumulated from t until the trial’s last step. Since the 
ground truth value is unknown, the critic is used to approximate the 
value. In addition to receiving the same inputs as the actor to infer 
the state, the critic also takes as inputs the action at taken by the ac-
tor in this state. It then outputs the estimated Qt for this action, 
trained through the temporal- difference reward prediction error 
(TD error) after receiving the reward rt (∣rt + γQt+1 − Qt∣, where γ 
denotes the temporal discount factor). In practice, our algorithm 
incorporates additional mechanisms to enhance training (fig. S1, A 
and B; see Materials and Methods) (29).

The state st is not fully observable, so the agent must maintain an 
internal state representation (belief bt) for deciding at and Qt. Both 
actor and critic undergo end- to- end training through backpropagation 
(BP) without explicit objectives for shaping bt. Consequently, net-
works are free to learn diverse forms of bt encoded in their neural 
activities that aid them in achieving their learning objectives. Ideal-
ly, networks may develop an effective Markovian belief update rule 
akin to recursive Bayesian estimation (although this is not guaran-
teed; Materials and Methods). Recursive Bayesian estimation infers 
a posterior density over the world state st from two primary sources 
of evidence. The first source involves predicting the state st based on 
its internal model of the dynamics, its previous posterior bt−1, and 
the last self- action at−1 (e.g., a motor efference copy). The second source 
is a partial and noisy observation ot of st drawn from the observation 
probability O(ot ∣ st) (Fig. 1C). Note that the actual O in the brain for 
this task is unknown. For simplicity, we model ot as a low- dimensional 
vector, including the target’s location when visible (the first 300 ms, 
Δt = 0.1 s), and the agent’s observation of its velocities through optic 
flow, with velocities subject to Gaussian additive noise. Full details 
of this formulation are shown in Materials and Methods.

Actor and critic networks can have a variety of architectures. Our 
goal here is to investigate whether functionally specialized modules 
provide advantages for our task. Therefore, we designed architectures 
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Fig. 1. RL agents with different neural architectures were trained in a partially observable navigation task. (A) Schematic of the navigation task from the subject’s perspective. 
(B) Block diagram showing the interaction between an Rl agent and the task environment. (C) Graphical model of the task. environment update, dark gray; belief update, light gray. 
(D) Schematic of actors with a holistic (left) or modular (right) architecture. thought bubbles denote the variables computed in each module. dashed arrows indicate training signals. 
(E) Similar to (d) but for critic networks. (F) Fraction of rewarded trials during the training process following training phase 1, measured using a validation set (500 trials) for each agent 
at each checkpoint, which occurs every 500 training trials. Shaded regions denote ±1 SeM across training runs with eight random seeds. (G) An example trial showing monkeys and 
agents navigating toward the same target. Shaded circle, reward zone. inset compares the target location versus the stop location of monkey S. (H) Overhead view of the spatial dis-
tribution of 500 representative targets and an example modular agent’s trajectories navigating toward these targets. (I) comparison of agents/monkeys’ stop locations for the target 
locations from (h). Black dashed lines have a slope of 1. (J) Fraction of correct trials in a test set (1657 trials) as a function of hypothetical reward boundary size. Solid lines denote true 
data; dashed lines denote shuffled data. the gray dotted line denotes the true reward boundary size. (K) true data versus shuffled data in (J) (ROc curve). inset shows AUc. (J) to (K) 
Agents’ data are averaged across eight training runs. (L) Performance (Pearson’s r) of linear decoders trained to decode task variables from example neural modules using trials in (J).
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incorporating modules with distinct levels of specialization for com-
parison. The first architecture is a holistic actor/critic, comprising a 
single module where all neurons jointly compute the belief and the 
action/value. In contrast, the second architecture is a modular actor/
critic, featuring modules specialized in computing different variables 
(Fig. 1, D and E). The specialization of each module is determined as 
follows. First, we can confine the computation of beliefs. Since com-
puting beliefs about the evolving state requires integrating evidence 
over time, a network capable of computing belief must have some 
form of memory. Recurrent neural networks (RNNs) satisfy this re-
quirement by using a hidden state that evolves over time. In contrast, 
computations of value and action do not need additional memory 
when the belief is provided, making memoryless multilayer percep-
trons (MLPs) sufficient. Consequently, adopting an architecture with 
an RNN followed by a memoryless MLP [modular actor/critic in 
Fig. 1 (D and E)] ensures that the computation of belief is exclusively 
confined to the RNN. Second, we can confine the computation of the 
state- action value Qt for the critic. Since a critic is trained end- to- end 
to compute Qt, stacking two modules between all inputs and outputs 
does not limit the computation of Qt to a specific module. However, 
since Qt is a function of the action at, we can confine the computation 
of Qt to the second module of the modular critic (Fig. 1E, right) by 
supplying at only to the second module. This ensures that the first 
module, lacking access to the action, cannot accurately compute Qt. 
Therefore, the modular critic’s RNN is dedicated to computing bt and 
sends it to the MLP dedicated to computing Qt. This architecture en-
forces modularity and hierarchical computation.

For the modular actor (Fig.  1D, right), while we know that bt 
computation is confined to the RNN, there is no straightforward 
way to confine at computation to the MLP module through architec-
ture design when both modules are trained end- to- end. Although a 
well- trained modular actor may learn sequential computation by 
computing at only in the MLP, it is not enforced, and at may still be 
distributively computed in both modules. Nevertheless, the mod-
ular actor has higher specialization than the holistic actor, which 
lacks confined bt computation. Thought bubbles in Fig. 1 (D and E) 
denote the variables that can be computed within each module en-
forced through architecture rather than indicating they are encoded 
in each module. For example, bt in modular architectures is passed 
to the second module, but an accurate bt can only be computed in 
the first RNN module.

We trained agents using all four combinations of these two actor 
and critic architectures (Fig. 1F, legend). We refer to an agent whose 
actor and critic are both holistic or both modular as a holistic agent 
or a modular agent, respectively. The training concluded after agents 
had experienced 104 trials (after training phase 1; see Materials and 
Methods). Agents with modular critics demonstrated greater con-
sistency across various random seeds (Fig. 1F, shaded regions) and 
achieved near- perfect accuracy more efficiently than agents with 
holistic critics.

Agents’ behavior was compared with that of two monkeys (Fig. 1G) 
for a representative set of targets uniformly sampled on the ground 
plane (modular/holistic agent; Fig. 1H and fig. S1C). In the next sec-
tion, we will contrast the properties of agents’ trajectories, but first, we 
focus on the accuracy of their stop locations (linear: r̃  , angular: θ̃ ) 
versus the target location (linear: r, angular: θ; Fig. 1G, inset). The 
tight correspondence between stop and target locations indicates that, 
similar to monkeys, all agents had learned the training task (Fig. 1I; 
Pearson’s r: fig. S1D). When stop locations were regressed against target 

locations (without intercept), we noticed that, similar to monkeys, 
agents also systematically undershot targets (fig. S1E; regression slope 
<1). This finding can be predicted based on the RL framework: Al-
though the immediate reward for stopping at any location within the 
reward zone is the same, those considering long- term values dis-
counted over time should prefer closer reward locations to save time.

We used a receiver operating characteristic (ROC) analysis (20, 
21) to systematically quantify behavioral performance. A psycho-
metric curve for stopping accuracy is constructed from a large rep-
resentative dataset by counting the fraction of rewarded trials as a 
function of a hypothetical reward boundary size (radius 65 cm is the 
true size; infinitely small/large reward boundary leads to no/all re-
warded trials). A shuffled curve is constructed similarly after shuf-
fling targets across trials (Fig. 1J). Then, an ROC curve is obtained 
by plotting the psychometric curve against the shuffled curve 
(Fig. 1K). An ROC curve with a slope of 1 denotes a chance level 
(true = shuffled) with the area under the curve (AUC) equal to 0.5. 
High AUC values indicate that all agents reached good accuracy af-
ter training (Fig. 1K, inset). This accuracy can be explained by ac-
curate task variables encoded in their neural networks (actor: 
Fig. 1L, critic: fig. S1F; see Materials and Methods), as previously 
also shown in the macaque brain (21, 27, 30). Note that the modular 
agent achieved near- perfect accuracy (Fig. 1F); therefore, a slightly 
higher AUC for the holistic agent than for the modular agent 
(Fig. 1K, inset) does not imply that the holistic agent is more accu-
rate. Instead, this small AUC difference arises because the modular 
agent is more optimal in stopping near the boundary of the reward 
zone, saving time while maintaining accuracy (see below).

Different architectures, different beliefs and actions
After training, the critic no longer interacts with the environment; 
only the actor does. Therefore, agents’ behaviors rely on the two vari-
ables their actors compute: the internal belief and the action based 
on this belief. In this section, we investigate these two variables for 
all agents.

We first examine the belief. Using noisy observations ot and 
noisy predictions from a motor efference copy at−1, the optimal be-
lief can be constructed through a Kalman filter (24). This filter 
implements recursive Bayesian estimation when all variables are 
Gaussian and the state transitions and observations are linear (Fig. 2A 
and Materials and Methods). It computes a posterior (belief) from a 
prior (based on its prediction) and likelihood (based on its observa-
tion) in two steps. In the prediction step, a prior for the current state 
is computed using the last self- action at−1 and the last belief bt−1, 
following the state transition T. The predicted result has two uncer-
tainty sources: one is the uncertainty in the last belief, denoted as 
Pt−1; the other is the uncertainty of process noise associated with 
prediction, denoted as a covariance matrix Σa. For our task, process 
noise only arises in the velocity given at−1; the position is simply an 
integral of the velocities, so there is no additional process noise. The 
process noise in the linear and angular components is independent 
(Eq. 4 in Materials and Methods), so the only nonzero elements in 
Σa are two variances σ2

av
 and σ2

aω
 . These matrix elements correspond 

to SDs σav and σaω, which we put into a vector σa and express in 
units of the linear and angular joystick gains σa = αaG. For example, 
when αa = 0.2 and G = [200 cm/s,90°/s]⊤ and then σa = 0.2G = 
[40 cm/s,18°/s]⊤.

In the update step, the posterior (belief bt) multiplies the prior 
from the prediction and the likelihood given the observation ot, 
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leading to weighted combinations of the means and covariances. 
The weight on the observation is known as the Kalman gain, which 
gives greater weight to the source with smaller uncertainty. The ob-
servation noise covariance is denoted as Σo, where the diagonal ele-
ments are the two variances σ2

ov
 and σ2oω for the observation of linear 

and angular velocities (Eq. 5). All off- diagonal elements are zero. σov 
and σoω can be put into a vector and are in units of G, i.e., σo = αoG.

Agents’ RNNs may learn a robust belief update rule akin to the 
Kalman filter [more precisely, an extended Kalman filter (EKF) (31) 
allowing nonlinear transitions]. In this scenario, during training, 
the RNN would infer σa and σo from its inputs at−1 and ot (in con-
trast to the EKF where these uncertainties are provided) and inter-
nalize an accurate Kalman gain based on these two uncertainties. 
Note that for our task, the Kalman gain relies solely on σa and σo and 
is independent of prior uncertainty Pt−1 (Materials and Methods).

During the training in the last section, σa = 0.2G and σo = 0.1G 
for all agents, referred to as the default training uncertainties. If an 
agent develops an EKF- like belief, the learned Kalman gain should 
weigh more on observations (since σo < σa). Consequently, we hy-
pothesize that in testing, the belief accuracy should be greatly af-
fected if observations are less reliable than in training. Conversely, it 
should not be as greatly affected if predictions become more unreli-
able than in training.

To investigate this, we first defined an EKF agent (fig. S2A) that 
computes beliefs in its actor and critic using EKF modules instead of 
RNNs. We similarly trained this agent in the task using the default 
uncertainties. The EKF module requires uncertainties to be provided 
to compute the Kalman gain, which is then used to weigh prediction 
and observation. During training, ground truth uncertainties were 
provided for computing the Kalman gain. After training, during test-
ing, we fixed the Kalman gain in the EKF module to be the same as 
that in training, but we increased the uncertainties in the task envi-
ronment beyond the training uncertainties. The performance change 
with these testing uncertainties, measured by the AUC drop from the 
AUC with training uncertainties (Fig. 2B, left: “over observer EKF”), 
shows that the accuracy of this EKF belief, which has a Kalman gain 
that weighs observation more heavily, is less susceptible to increased 
σa but more susceptible to increased σo, consistent with our hy-
pothesis. Conversely, when trained and using more reliable predic-
tion than observation for computing its Kalman gain, e.g., σa = 0.1G 
and σo = 0.2G (reversed training uncertainties), an EKF agent has a 
belief that is less affected by increased σo but more affected by in-
creased σa (Fig. 2B, right: “over predictor EKF”).

With these baselines established, we conducted similar tests by 
increasing uncertainties to levels higher than the training uncertain-
ties for all trained agents using RNNs for beliefs (Fig.  2C). These 
agents were trained with the default training uncertainties, the same 
as that for over observer EKF. Agents using holistic critics exhibited 
performance changes more akin to over predictor EKF, while the 
modular agent aligned most closely with over observer EKF (Fig. 2, D 
and E). The modular agent resembled over predictor EKF only 
when trained with reversed uncertainties (“over predictor modular”; 
fig. S2B).

These results suggest that agents with different architectures 
learned to rely on different information sources. The modular agent’s 
belief closely aligns with the EKF, relying more on the source with 
smaller uncertainty. In contrast, agents using holistic critics weighed 
the less reliable source more heavily, and improving their belief 
requires either training data with a larger uncertainty difference 

between σa and σo (fig. S2, C and D) or a much longer training time 
(fig. S2, E and F). Nevertheless, although the holistic agent learned a 
belief that was suboptimal for the training task, this belief may be 
beneficial for other tasks, resulting in better performance than the 
modular agent in those tasks (fig. S2, G to I; see Discussion).

Next, we investigate agents’ actions. While we demonstrated in the 
last section that all agents’ stop locations were accurate after training 
(Fig. 1K), we also noticed distinct characteristics in their trajectories 
(Fig. 1G). To quantify these differences, we examined two crucial tra-
jectory properties: curvature and length. When tested on the same 
series of targets as the monkeys experienced, agents with modular 
critics displayed more efficient trajectories than those with holistic 
critics, characterized by smaller curvature and length (fig. S3, A and 
B). Notably, the difference between trajectories generated by agents 
with modular critics and those of monkey B was comparable to the 
variation between trajectories of two monkeys (Fig. 3, A and B). In 
contrast, when agents used holistic critics, the difference in trajecto-
ries from monkey B was much larger, suggesting that modular critics 
facilitated more animal- like behaviors.

Agents are expected to develop efficient behaviors, as the value of 
their actions gets discounted over time. Therefore, we assess their ef-
ficiency throughout the training process by measuring the reward 
rate, which refers to the number of rewarded trials per second. We 
found that agents with modular critics achieved much higher reward 
rates (Fig. 3C), which explains their more efficient trajectories (fig. S3, 
A and B).

Since the actors responsible for generating actions were trained by 
maximizing the critics’ value estimation instead of the latent ground 
truth value, the lower reward rates may be attributed to inaccurate 
value estimation. To investigate this, we monitored the TD error for 
critics during training. This error is the discrepancy between the cur-
rent value estimate and the discounted subsequent value estimate 
combined with the current reward, serving as the learning objective 
for the critic (Materials and Methods and Fig. 3D) (23, 29). A critic 
that perfectly comprehends the task dynamics and rewards should 
yield no errors. Agents with modular critics exhibited faster conver-
gence of TD errors, ultimately reaching much lower values compared 
to agents with holistic critics (Fig. 3D). This suggests that the modu-
lar critic enhances efficiency and accuracy in learning the task struc-
ture, thereby providing a training signal that closely aligns with the 
true nature of the task for the actor. Consequently, actors can develop 
superior behavior in the training task, as opposed to those trained by 
the holistic critic (Fig. 3C).

Furthermore, it is worth noting that the efficacy of actions de-
pends on the quality of the beliefs in the actor. Inferior actions by 
agents using holistic critics may arise from accurate action choices 
coupled with inaccurate beliefs. To investigate whether this action 
itself is worse despite the quality of belief, we introduced a “holistic 
EKF” agent incorporating a holistic critic and an EKF actor (fig. S3C). 
Despite conditioning the control on a perfect EKF belief, this agent 
still fell short when compared to a modular agent in terms of trajec-
tory characteristics and reward rate (fig. S3, D to F). This deficiency 
was attributed to the inferior training signal from the holistic critic 
for the action (fig. S3G).

Together, these results suggest that modular critics provide a su-
perior training signal compared to holistic critics, allowing actors to 
learn more optimal beliefs and actions. With a poor training signal 
from the holistic critic, the modularization of actors may not enhance 
performance. Next, we will evaluate the generalization capabilities 
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of the trained agents to understand how the quality of belief and ac-
tion influences generalization.

Gain task: Generalization to previously unencountered 
sensorimotor mappings
One crucial aspect of sensorimotor mapping is the joystick gain, 
which linearly maps motor actions on the joystick (dimensionless, 
bounded in [−1,1]) to corresponding velocities in the environment. 
During training, the gain remains fixed at 200 cm/s and 90°/s for 
linear and angular components, referred to as the 1× gain. By in-
creasing the gain to values that were not previously experienced, we 
create a “gain task” manipulation. Monkeys demonstrated immedi-
ate generalization to unencountered gains and other task manipula-
tions (25). This prompts us to investigate whether our trained agents 
can demonstrate similar generalization abilities. One distinction 
between animals and agents in unencountered tasks is that monkeys 
faced no constraints in learning, while the neural weights in our 
agents were frozen. Nevertheless, monkeys’ performance was stable 
in this gain task since the first trial (25), indicating that they do not 
rely on lengthy learning to grasp these novelties (see Discussion).

To assess generalization abilities, monkeys and agents (the “Agent 
selection” section in Materials and Methods) were tested with unen-
countered gains of 1.5× and 2× (Fig. 4A). Blindly following the same 

action sequence as in the training task would cause the agents to 
overshoot (no generalization hypothesis: Fig. 4B, dashed lines; Materials 
and Methods). Instead, the agents displayed varying degrees of adap-
tive behavior (Fig. 4B, solid lines). To quantitatively evaluate behavioral 
accuracy while also considering over/undershooting effects, we de-
fined radial error as the Euclidean distance between the stop and target 
locations in each trial, with positive/negative sign denoting over/
undershooting (using idealized trajectories, see Materials and Methods). 
Under the previously unencountered gains, agents with modular 
critics consistently exhibited smaller radial errors than agents with 
holistic critics (Fig. 4C), with the modular agent demonstrating the 
smallest errors, comparable to those observed in monkeys (Fig. 4D 
and fig. S4A). ROC analyses further confirmed the performance dif-
ferences among agents (Fig. 4, E and F).

Similar to the assessment of the agents’ trajectory characteristics, 
reward rates, and TD errors in the previous section, we again evaluated 
these quantities, this time under the unencountered gains. Agents 
with modular critics displayed more animal- like generalization 
trajectories, higher reward rates, and lower TD errors than agents 
with holistic critics, with the modular agent showing the closest re-
semblance to monkeys, the highest reward rates, and the lowest TD 
errors (fig. S4, B and C, and Fig. 4, G and H). Notably, the modular 
agent not only learned the training task the fastest (Fig. 4G, vertical 
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calculated by dividing the number of rewarded trials in a validation set (500 trials) by the time spent in seconds. (D) Similar to (c) but showing the agents’ td error aver-
aged across time steps and trials in the validation set after they reached an average accuracy of 60% across seeds. At each step t, the critic computes Qt based on the state 
and action at t and Qt+1 based on the state and action at t + 1. the td error is then ∣rt + γQt+1 − Qt∣, where rt and γ denote the current reward and the discount factor 
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bars on the x axis) but also learned to generalize better and faster 
than other agents, continuing to improve its generalization with ad-
ditional training trials (Fig. 4G). This trend is also evident in the 
accuracy of the agents’ value estimates on unencountered gain trials 
(Fig. 4H).

Together, these results demonstrate the impact of different induc-
tive biases on generalization to unencountered gains. The modular 
critic enables better generalization than the holistic critic, and the 
combination of a modular critic and modular actor produces the best 
generalization performance.

Generalization in the gain task, facilitated by agents’ 
belief accuracy
Although we have confirmed that agents with distinct neural archi-
tectures exhibit varying levels of generalization in the gain task, the 

underlying mechanism remains unclear. We hypothesized that agents 
with superior generalization abilities should generate actions based 
on more accurate internal beliefs within their actor networks. There-
fore, the goals of this section are to quantify the accuracy of beliefs 
across agents tested on unencountered gains and to examine the im-
pact of this accuracy on their generalization performance.

During the gain task, we recorded the activities of RNN neurons 
in the agents’ actors, as these neurons are responsible for computing 
the beliefs that underlie actions (Fig. 1D). As expected, these neurons 
showed sensitivity to the agents’ locations within the environment 
(spatial tuning; holistic agent: Fig.  5A, modular agent: Fig.  5B; 
Materials and Methods). To systematically quantify the accuracy of 
these beliefs, we used linear regression (with 𝓁2 regularization) to 
decode agents’ locations from the recorded RNN activities for each 
gain condition (Fig.  5C; Materials and Methods). We defined the 
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decoding error, which represents the Euclidean distance between 
the true and decoded locations, as an indicator of belief accuracy. 
While all agents demonstrated small decoding errors under the 
training gain, we found that agents struggling with generalization 
under increased gains (Fig. 4F) also displayed reduced accuracy in 
determining their own location (Fig. 5D and fig. S5A). Agents’ be-
havioral performance correlates with their belief accuracy (trial- 
average: Fig. 5E; trial- by- trial: fig. S5B), a trend that was also observed 
in monkeys (21).

In Fig. 2, we demonstrated that different architectures yield dis-
tinct belief update rules after training, with the modular agent’s be-
lief resembling an EKF. Our analyses here further indicate that this 
EKF- like belief enables a more accurate state representation in pre-
viously unencountered gains, leading to superior generalization.

Perturbation task: Generalization to passive motions, 
facilitated by belief accuracy
To assess one’s ability for generalization with manipulated latent 
states in the environment, we introduce another task called the “per-
turbation task” (Materials and Methods). This task involves applying 
passive perturbation velocities to the joystick control at a random 
time for both the linear and angular components, causing monkeys 
or trained agents (the “Agent selection” section in Materials and 
Methods) to deviate from their intended trajectories. The perturba-
tions follow a Gaussian temporal profile lasting for 1 s (Fig.  6A), 
with perturbation peak time relative to the trial start uniformly 
sampled in the range [0.5,1.5] second and peak magnitudes for the 
passive linear and angular velocities sampled in [−200,200] cm/s 
and [−120,120]°/s for each trial. Figure  6B illustrates an example 
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trial, displaying agents’ adaptive behaviors in response to the sam-
pled perturbations shown in Fig.  6A. If agents blindly follow the 
same action sequence as in the training task (Fig. 6B, no generaliza-
tion hypothesis; see Materials and Methods), then they would devi-
ate toward the perturbation direction.

Monkeys displayed adaptation to perturbations, as evidenced by 
their behavioral errors (Fig. 6C). When faced with the same pertur-
bations, agents with modular critics displayed errors comparable to 
those of monkeys, which were much smaller than the errors pro-
duced by agents with holistic critics (Fig.  6D). ROC analysis also 
supports these findings (Fig. 6E). This performance difference can 
be attributed to the agents’ ability to adjust behaviors: Agents with 
modular critics demonstrated greater compensation for perturba-
tions compared to those with holistic critics (fig. S6, A and B). Ma-
caques and humans also exhibited compensatory behaviors in this 
task (26).

Similar to our observations in the gain task (Fig. 4, G and H), 
agents’ generalization abilities (measured by reward rates) under 
perturbation improved with increased exposure to training trials 
(fig. S6C), and those with higher reward rates demonstrated a better 
understanding of the perturbation task, as indicated by their lower 
TD errors (fig. S6D).

We further investigated the neural mechanisms underlying agents’ 
different generalization abilities. As agents’ locations were perturbed, 
their internal beliefs should continuously track these perturbed loca-
tions. Failure to do so would introduce errors into their internal be-
liefs, ultimately affecting generalization behaviors. To test this, similar 
to our approach in the gain task (Fig. 5), we recorded the agents’ loca-
tions and the activities of RNN neurons in their actors under pertur-
bations. We then linearly decoded the agents’ locations from these 
activities (Fig. 6F; see Materials and Methods) and measured the 
difference between the true and decoded locations as an indicator of 
belief accuracy. We found that increased perturbations caused agents’ 
beliefs to deviate from the true locations (Fig. 6G, top, and fig. S6, E 
and F), with agents using modular critics being less affected than 
those using holistic critics (Fig. 6G, bottom). These belief errors, akin 
to what we observed in the gain task (Fig. 5E and fig. S5B) then prop-
agated to behavioral errors (trial- average: Fig.  6H; trial- by- trial: 
fig. S6G).

Note that confidence ellipses used in the top two panels in Fig. 6G 
represent the bivariate distribution of data (assuming Gaussianity) 
in fig. S6 (E and F), produced by agents with eight random seeds 
each. The center of an ellipse denotes the mean, and the region in-
side indicates within 1 SD. A positive/negative tilt in the major axis 
of the ellipse indicates a positive/negative correlation, and a more 
circular ellipse suggests a correlation closer to zero (Pearson’s r in 
the same agent order as in Fig. 6G for the left: −0.67, −0.69, −0.42, 
and −0.30; for the right: −0.30, −0.31, −0.26, and −0.19; P = 0).

These analyses again demonstrate the impact of architectural 
inductive biases on generalization. By enabling actors to learn 
EKF- like beliefs that remain accurate under perturbations, modu-
lar critics facilitate superior generalization than holistic critics.

Generalization contingent on learned Kalman gain
We have demonstrated that the modular agent learned an EKF- like 
belief (Fig. 2, D and E). This proved to be more accurate when en-
countering unseen gains and perturbations, facilitating generaliza-
tion (Figs. 5E and 6H). Nevertheless, the reasons behind the high 
accuracy of an EKF- like belief in these tasks remain unclear.

Agents were trained with the default training uncertainty σa = 
0.2G in prediction and σo = 0.1G in observation. Therefore, an EKF- 
like belief relies more on observations. Our gain and perturbation 
tasks have structures that also necessitate a greater reliance on ob-
servation: Subjects must be aware of novel gains or perturbations via 
observation of optic flow, as their internal model for prediction be-
comes outdated in these tasks. We hypothesize that the EKF- like 
belief in previous sections favors generalization because the training 
uncertainty aligns with the structure of unencountered tasks.

To verify this, it is essential to train agents with various pairs of σa 
and σo so that for each pair, an EKF- like belief learns a unique reli-
ance on observation, i.e., the Kalman gain. We trained 16 modular 
and 16 holistic agents, with each architecture being trained using a 
combination of σa and σo within {0,0.1G,0.2G,0.3G}. An uncertainty 
of 0 denotes the noise- free case. To investigate the Kalman gain 
learned by each agent, we conducted analyses (Fig. 7A, top: modular, 
bottom: holistic) similar to those in Fig. 2 (C to E). Specifically, just 
like in Fig. 2C, each agent trained under a unique uncertainty condition 
was tested with combinations of five levels of uncertainties {+0, 
+0.2,+0.4,+0.6,+0.8}G higher than the training uncertainties for 
both σa and σo. The resulting AUC drop table was then correlated 
with that of over observer EKF and over predictor EKF in Fig. 2B, a 
process akin to Fig. 2 (D and E). These two steps were repeated for 
all agents trained with all combinations of σa and σo, and these re-
sults are shown in Fig. 7A (left: correlation with over observer EKF, 
right: with over predictor EKF). A high correlation with over ob-
server EKF indicates the belief ’s high reliance on observation, while 
a high correlation with over predictor EKF indicates a high reliance 
on prediction.

Modular agents’ beliefs aligned with the latent uncertainties dur-
ing training, relying more on observations when trained with σo < 
σa and leaning more toward prediction when trained with σa < σo 
(Fig.  7A, top). However, holistic agents had inferior abilities in 
learning beliefs that correspond to training uncertainties (Fig. 7A, 
bottom). This deficiency is evident in specific uncertainty conditions 
where observation was more reliable, yet holistic agents relied more 
on prediction.

Following the estimation of agents’ learned Kalman gains, we 
then assessed their performance in gain and perturbation tasks (see 
the “Agent selection” section in Materials and Methods). Modular 
agents (Fig. 7B, top) trained with smaller observation uncertainties 
(σo < σa) generalized better than those trained with equal uncertain-
ties (σo = σa) and, worst of all, those trained with larger observation 
uncertainties (σo > σa). However, holistic agents generalized poorly 
in some uncertainty conditions where σo < σa (Fig. 7B, bottom). By 
comparing agents’ learned Kalman gains (Fig. 7A) and performance 
(Fig. 7B), generalization had a strong positive correlation with reli-
ance on observation and, conversely, had a negative correlation with 
reliance on prediction (modular: Fig. 7C, holistic: Fig. 7D).

These findings confirm our hypothesis that constructing beliefs 
based more on observation aligns with the structure of our gain and 
perturbation tasks, so belief remains relatively accurate in these tasks 
and facilitates generalization. Learning to rely more on observation 
necessitates σo < σa during training. Modular agents can efficiently 
discern the more reliable input source for their beliefs, while holistic 
agents perform poorly in achieving this, leading to a reliance on pre-
diction even when observation is more reliable in some conditions. 
With its inferior inductive bias for our tasks, holistic agents required 
a much extended training period (105 trials after training phase 1, 
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10 times the previously used duration; Materials and Methods and 
fig. S7A) to learn the Kalman gains that match training uncertainties. 
As expected, this improvement in belief is associated with improved 
performance in the unencountered tasks (fig. S7B). Nevertheless, 
even after extensive training, holistic agents still generalized worse 
than modular agents (fig. S7B). This performance difference is more 

obvious when we evaluated them under more challenging gain and 
perturbation parameters (fig. S7C). Note that with equal uncertain-
ties, the performance of agents trained without any noise (σo = σa = 
0) is worse than that of agents trained with noise (σo = σa > 0; 
fig. S7C). This may suggest that noise injected into inputs can im-
prove the robustness of learned solutions (32). Nevertheless, it is still 

0 0.1 0.2 0.3

0

0.1

0.2

0.3

o

0.834 0.841 0.891 0.931

0.819 0.829 0.879 0.906

0.772 0.79 0.848 0.876

0.742 0.745 0.791 0.827

(G
)

Perturbation task

0.75 0.84 0.92
AUC

0 0.1 0.2 0.3

0

0.1

0.2

0.3

o

0.741 0.751 0.786 0.83

0.738 0.747 0.779 0.835

0.716 0.746 0.762 0.814

0.717 0.719 0.742 0.773

(G
)

Perturbation task

0.72 0.77 0.82
AUC

A

0 0.1 0.2 0.3

0

0.1

0.2

0.3

o

0.989 0.995 0.963 0.78

0.985 0.995 0.953 0.803

0.993 0.995 0.977 0.857

0.995 0.999 0.988 0.94

(G
)

Reliance on prediction

0.78 0.89 1
Corr. with over pred. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.376 0.354 0.514 0.802

0.407 0.363 0.537 0.783

0.345 0.356 0.459 0.717

0.343 0.305 0.392 0.571

Reliance on observation

0.32 0.56 0.8
Corr. with over obs. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3
o

0.793 0.846 0.543 0.282

0.84 0.867 0.592 0.387

0.964 0.966 0.811 0.623

0.989 0.994 0.965 0.873

(G
)

Reliance on prediction

0.29 0.64 0.99
Corr. with over pred. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.785 0.733 0.951 0.997

0.74 0.709 0.934 0.991

0.494 0.501 0.778 0.92

0.376 0.363 0.506 0.699

Reliance on observation

0.37 0.68 0.99
Corr. with over obs. EKF

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.82 0.833 0.924 0.95

0.799 0.821 0.92 0.942

0.759 0.773 0.84 0.893

0.742 0.738 0.784 0.828

Gain task

0.74 0.84 0.94
AUC

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.719 0.706 0.74 0.823

0.723 0.705 0.73 0.808

0.72 0.704 0.72 0.823

0.714 0.712 0.709 0.76

Gain task

0.71 0.76 0.81
AUC

−1.0

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Gain task

−1.0

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Gain task

−1.0

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Perturbation task

−1.0

−0.5

0.0

0.5

1.0
C

or
re

la
tio

n

Perturbation task

B
Generalization performanceLearned Kalman gain

Generalization vs. Kalman gain Generalization vs. Kalman gain
C D

Modular
Holistic

a (G)Training a (G)Training a (G)Training a (G)Training

a (G)Training a (G)Training a (G)Training a (G)Training

o
(G

)
Tr

ai
ni

ng
o

(G
)

Tr
ai

ni
ng

o
(G

)
Tr

ai
ni

ng
o

(G
)

Tr
ai

ni
ng

Reliance
on obs.

Reliance
on pred.

Reliance
on obs.

Reliance
on pred.

Reliance
on obs.

Reliance
on pred.

Reliance
on obs.

Reliance
on pred.
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eKF in Fig. 2B (left) (similar to Fig. 2d). Right: Similar to left but showing the correlation between the AUc drop of each agent and that of over predictor eKF in Fig. 2B (right) 
(similar to Fig. 2e). these two steps were repeated for each training uncertainty condition. (B) AUc for agents in (A) tested in the gain (left) and perturbation (right) tasks. in the 
gain task, the testing gain was 2×. in the perturbation task, the testing perturbation peak time was 0.5 s, and the peaks of perturbation linear and angular velocities were 
sampled uniformly from the ranges used in Fig. 6h. (A) and (B) two thousand trials were used for each seed of each agent. values for each agent were averaged across eight 
random seeds. dashed lines denote when σo = σa. White/black text indicates below/above- average values. (C) left: correlation between modular agents’ learned Kalman gain 
[values in (A), top] and their generalization performance in the gain task [(B), top left ]. Right: Similar to left but using their generalization performance in the perturbation task 
[(B), top right]. (D) Similar to (c) but showing the holistic agent [(A), bottom and (B), bottom]. (c) and (d) error bars denote a 95% ci obtained through bootstrapping.

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024



Zhang et al., Sci. Adv. 10, eadk1256 (2024)     19 July 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

13 of 21

the relative reliability between two uncertainties that plays a major 
role in shaping generalization.

We then investigate why the modular and holistic agents perform 
differently (fig. S7C) even when the holistic agent’s learned Kalman 
gain was accurate due to extensive training (fig. S7A). In Fig. 3, we 
demonstrated that besides beliefs, the holistic agent also developed 
inferior control actions. Here, we evaluated actions for agents exten-
sively trained with the default uncertainty (σa = 0.2G, σo = 0.1G) 
under challenging gain and perturbation parameters (fig. S8, A and 
B). We also considered a holistic EKF agent, incorporating a holistic 
critic and an EKF actor (fig. S3C). We found that the holistic EKF 
agent developed more efficient actions and generalized better than 
the holistic agent, suggesting that actions are better when based on 
an accurate EKF belief. Nevertheless, the modular agent’s actions 
and performance were still superior to those of both the holistic EKF 
and EKF agents (fig. S8, A and B).

Together, these findings suggest that the modular agent has a bet-
ter inductive bias than the holistic agent for our gain and perturba-
tion tasks, resulting in much better data efficiency for acquiring the 
underlying structure of the training task. The modular architecture 
favors generalization when its learned knowledge aligns with the 
structure of unseen tasks. While additional training can ameliorate 
the shortcomings of the holistic architecture to some extent, it can-
not entirely offset its inherent limitations.

More architectures using less specialized modules
Above, we compared the holistic architecture against the modular 
architecture to investigate the advantages of module specialization. 
In this section, we aim to further strengthen our argument by intro-
ducing more architectures that deviate from the modular architec-
ture (Fig. 8, A and B).

By using two sequential RNNs instead of one, critic/actor 2 can 
distribute computations of two variables across two modules without 
enforced specialization. Substituting an MLP for the second RNN in 
critic/actor 2 yields critic/actor 3, where the belief computation over 
time is confined to the first RNN. Alternatively, we can retain two 
RNNs in the critic and exclusively provide the action input to the 
second RNN. This yields critic 4, where the value computation is 
confined to the second module. The modular critic confines both the 
belief and value computation and has the most module specializa-
tion. Note that the total number of trainable parameters is designed 
to be similar across all architectures (fig. S9A and see Materials and 
Methods).

We extensively trained agents using all combinations of these 
critics and actors (105 trials) with default uncertainties σa = 0.2G 
and σo = 0.1G. We found that agents with less specialized critics 
still demonstrated lower reward rates than those with a modular 
critic (fig. S9B, left). This can be attributed to the less accurate value 
estimates provided by their critics for training their actors (TD er-
rors; fig. S9B, right; Pearson’s r = −0.93).

We then compared these agents’ (the “Agent selection” section in 
Materials and Methods) generalization abilities (Fig.  8, C and D). 
Across critics, the modular critic (critic 5) outperformed all others. 
Note that the architectural components used in the pairs of critics 5 
and 3 (RNN + MLP) and critics 4 and 2 (RNN + RNN) are identical. 
The only difference is that in critics 5 and 4, the value computation is 
confined to the second module, as only there can the computation ac-
cess the action at, whereas critics 3 and 2 allow both modules to access 
the action, eliminating such confinement. The performance difference 

within each pair highlights the advantages of specialization for value 
computation. Similarly, in critic 5, the belief computation is confined to 
the first module, while in critic 4, it is not confined. The performance 
difference between critics 5 and 4 demonstrates that specialization 
for belief computation could further enhance performance. However, 
specializing in belief without specializing in value did not provide 
benefits, as indicated by the difference between critics 3 and 2 (mean 
AUC across random seeds: Fig. 8, C and D, top; SEM of AUC across 
random seeds: fig. S9C; reward rate: fig. S9D).

Actors’ performance was contingent on the choice of critic architec-
tures, as actors were trained by critics to learn the task structure. With a 
modular critic, the modular actor benefits from a dedicated belief 
module, enabling the development of an internal belief that remains 
accurate in previously unseen tasks (Fig.  8, C and D, bottom). 
Consequently, it outperformed others with less accurate beliefs 
(Fig. 8, E and F).

Together, we conclude that the architecture using both the modular 
critic and modular actor represents the most appropriate inductive bias 
for our task, benefiting learning and generalization. The specialization 
among modules, rather than simply the number of modules, matters. 
To illustrate, critic 3 shares the same number and type of modules as 
critic 5, and it has more modules than critic 1. Nevertheless, critic 3 did 
not outperform critic 1 and performed worse than critic 5.

DISCUSSION
The brain has evolved advantageous modular architectures for mas-
tering daily tasks. Here, we investigated the impact of architectural 
inductive biases on learning and generalization using deep RL 
agents. We posited that an architecture with functionally specialized 
modules would allow agents to more efficiently learn essential task 
variables and their dependencies during training and then use this 
knowledge to support generalization in unseen tasks with a similar 
structure. To test this, we trained agents with architectures featuring 
distinct module specializations on a partially observable navigation 
task. We found that the agent using a modular architecture exhibited 
superior learning of belief and control actions compared to agents 
with weaker modular specialization. The modular agent’s beliefs are 
akin to an EKF, properly weighing information sources according to 
their relative reliability. Its actions are also more efficient and re-
semble trajectories of well- trained monkeys.

During our training task, the environment exhibits higher predic-
tion uncertainty than observation uncertainty, so the EKF- like belief 
should—and does—rely more on observation than prediction. Subse-
quently, we tested trained agents in unseen tasks with parameters that 
also favor greater reliance on observation. In line with the parameters 
of these tasks, the EKF- like belief of the modular agent remains more 
accurate than the belief of alternative agents, facilitating better gener-
alization in these tasks. Furthermore, the modular agent’s control is 
also more robust in handling these unseen tasks.

Reasons for the benefits of modularization
One explanation of the benefits of modularization lies in its capac-
ity to structure the underlying task variables and their relationships, 
allowing neural networks to learn the data- generating process more 
efficiently and facilitating generalization where the learned knowl-
edge is reusable (8–11, 33). This proves especially advantageous 
in natural tasks, where task variables typically exhibit sparse de-
pendencies.
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Inductive biases can be likened to “training data in disguise” (8). 
They offer useful priors that align more closely with the optimiza-
tion solution, substantially reducing the search space and minimiz-
ing training time. Our findings demonstrated these principles. The 
holistic agent, lacking the inductive biases of modularization, need-
ed substantially longer training than the modular agent to learn 
computations correctly weighing information sources (fig. S2F).

We designed the modular architecture (Fig. 1E, right) with priors 
of how latent variables are computed and their relationships. Spe-
cifically, the value computation in the critic involves observation ot, 
previous action at−1, current action at, and value Qt. This computation 

is broken down into two steps: firstly, computing bt in the belief 
module and then computing Qt in the value module based on bt. By 
design, the belief module receives ot and at−1 to compute bt, as bt 
should weigh these information sources. This module has recur-
rence since bt depends on bt−1. However, it does not consider at as an 
input, as at and bt are independent of each other. On the other hand, 
the value module operates by receiving the computed bt and at be-
cause Qt is dependent on these two. It does not have recurrence, as 
Qt is independent of Qt−1. The modular critic incorporates these 
variable relationships through architectural design. In contrast, the 
holistic critic lacks these priors embedded in its architecture and can 
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Critic 4

Critic 5
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45.9 37.7 30.8

34.2 33.2 34.7

41.0 33.9 36.5

22.6 21.0 18.1

19 32 45
Decoding error (cm)

Fig. 8. Agents using less specialized modules exhibit less accurate internal beliefs, resulting in inferior performance compared to the modular agent. (A and 
B) critic and actor diagrams as in Fig. 1 (e and d) but including more architectures with less specialized modules. (C and D) AUc (top) and decoding error (bottom, aver-
aged across time steps and trials) of agents in the gain (c) and perturbation (d) tasks, averaged across eight random seeds. For each seed of each agent, 2000 trials were 
conducted. Gains were sampled from [3×, 4×] for (c). Perturbation peak time was sampled from [0.5,1.5] s, and peaks of linear and angular perturbation velocities were 
sampled from [−200,800] cm/s and [−180,180]°/s for (d). Beliefs were decoded from the Rnn for actors 1 and 3 or the first Rnn for actor 2. the four corners represent the 
four agents used in the previous analyses. text in white/black denotes that the agent is worse/better than the average value of all agents. (E and F) AUc versus decoding 
error using data in (c) and (d). error bars denote ±1 SeM across random seeds.
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only acquire these relationships through learning. However, the suc-
cessful learning of these relationships is not assured, as agents with 
weaker module specialization exhibited inferior performance even 
after extensive training (fig. S9B).

It is also worth noting a key distinction from supervised learning: 
In training the critic, the learning target rt + γQt+1 is not fixed. The 
next value Qt+1 is bootstrapped by the critic itself or a delayed up-
dated version (Materials and Methods) (29, 34). Consequently, the 
learning target changes with updates of the critic, presenting an in-
herent challenge in achieving convergence (34). A strong inductive 
bias may effectively narrow down the solution search space, offering 
a more stable learning target. This is evident in the TD error (differ-
ence between the value estimation and the learning target) during 
training (Fig. 3D). This error for the modular critic converged faster 
and to a smaller error. A well- converged critic enhances the accura-
cy of its value estimates, serving as a more reliable training signal for 
the actor.

Generalization but NFL
The NFL theorems proved that no inductive bias can excel across all 
tasks (13). When agents are evaluated in domains vastly distinct 
from their training settings, such as learning navigation but being 
tested in a bandit task, it is expected that generalization falters. Fur-
thermore, even for tasks related to the training task, generalization 
may prove challenging if the acquired knowledge does not align with 
the structures of the new tasks.

Agents with a modular architecture can acquire the underlying 
structure of our training tasks. In contrast, holistic agents tend to 
acquire different knowledge from modular agents during training, 
such as forming beliefs based on unreliable information sources or 
exhibiting less efficient control actions. The gain and perturbation 
tasks have structures similar to the training task (when observations 
are more reliable), relying more on observation for belief formation 
and efficient steering. Consequently, a modular agent that accurate-
ly learns the training task’s structure can leverage its knowledge in 
these previously unseen tasks. However, it is worth noting that an 
infinite number of new tasks can be constructed, diverging from the 
training task’s structure but aligning with the “inferior” beliefs and 
control acquired by holistic agents.

Other tasks may be more aligned with the holistic agent’s belief. 
As in Fig. 2C, modifying uncertainties σa and σo to values higher 
than those during training can be regarded as an unencountered 
task. When this task presents much higher σo than σa (fig. S2, G and 
H, bottom left), the reliability of observations is considerably lower 
than that of predictions. Consequently, the holistic agent prioritiz-
ing predictions for belief outperformed the modular agent prioritiz-
ing observations in this scenario (fig. S2I).

A task can also be favored by the holistic agent’s control. During 
training, the reward for stopping at any location within the reward 
zone remains consistent and is discounted over time. The holistic 
agent tends to develop less efficient trajectories, stopping closer to 
the center of the reward zone, while the modular agent learned to 
stop nearer to the reward zone boundary to save time (fig.  S1E), 
thereby achieving a higher reward rate (Fig. 3C). Introducing an un-
encountered task with a variable reward, decreasing as a function of 
the distance between the stopping location and the reward zone cen-
ter, and not discounted over time, should result in superior perfor-
mance by the holistic agent compared to the modular agent tested in 
this task.

Limitation and future directions
Inductive biases play a crucial role in learning systems. However, when 
confronted with unseen tasks featuring structures distinct from those 
in training, intelligent systems, like animals, do not solely depend on 
existing knowledge. Instead, they also use efficient and adaptable 
learning algorithms to continually update their understanding of the 
new task at hand (1), a capability that our current models lack.

Various brain- inspired algorithms have been proposed to facilitate 
efficient learning of unseen tasks while leveraging previously acquired 
knowledge from old tasks. For example, the successor representation 
(35, 36), replicating place and grid cell properties, decomposes the 
value into a representation of transition probabilities learned from 
training and a reward function model, allowing more efficient learn-
ing in previously unseen tasks with new rewards. By only learning re-
wards, values can be reconstructed using these rewards and previously 
learned transitions. Furthermore, the meta- RL algorithm (37), in-
spired by the standalone fast learning system of the prefrontal cortex 
that is shaped by (but distinct from) the slow dopamine- based RL 
(38), uses model- free values to train a standalone RNN policy network 
that maps inputs to actions across multiple tasks. This allows the policy 
network to learn not just a single policy but an embedded learning 
algorithm for learning new tasks.

Numerous previous studies have identified animal- like behavior 
and neural computation in RL agents in a diverse range of tasks (35, 
37, 39–43). This “NeuroAI” paradigm (44) bridges neuroscience and 
AI, leveraging insights from the brain to enhance AI capabilities in 
tasks where animals excel naturally. A central challenge for this para-
digm lies in reconciling various proposed brain- inspired algorithms, 
each advantageous for specific tasks. Addressing this challenge may 
involve incorporating modular inductive biases, recognizing the di-
verse functional and algorithmic specializations observed in differ-
ent brain regions (35, 37, 45, 46). Inspired by this and the advantages 
of modularization that we have presented, future investigations could 
develop large modular networks that integrate diverse algorithms 
proposed in previous studies (35, 37, 39–43) into distinct modules. 
For instance, we may equip our agent with efficient learning algo-
rithms in new modules, enabling it to tackle previously unseen tasks 
with structures much different from its training data. Depending on 
the current task demands, agents could choose strategies such as 
zero- shot generalization, efficient learning to update specific knowl-
edge aspects (35, 47–50), or complete relearning.

It is worth noting that although our work compared the behaviors 
of animals and agents after training, their learning processes differ, and 
this difference is not the objective of our study (see Supplementary 
Text for details). Furthermore, future work may investigate the advan-
tage of an inductive bias that enforces two different neural modules to 
approximate prediction and update steps in an EKF sequentially. Our 
current modular agent uses a single RNN to approximate the entire 
EKF computation (see Supplementary Text for details).

MATERIALS AND METHODS
Task
The navigation task and its manipulations were originally designed 
for macaques (20, 21, 25–27, 30). All macaque data used in this pa-
per were from previous works (20, 21). Below, we provide a sum-
mary of the animal task setup based on (20).

Subjects used an analog joystick with two degrees of freedom to 
control their linear and angular speeds in a virtual environment. 
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This virtual world comprised a ground plane with textural elements 
having a limited lifetime of ∼250 ms. The ground plane was circular 
with a radius of 70 m. The subject was positioned at its center at the 
beginning of each trial. Each texture element was an isosceles tri-
angle (base by height: 8.5 cm by 18.5 cm) that randomly reposi-
tioned and reoriented anywhere in the arena. The maximum linear 
and angular speeds were fixed to 200 cm/s and 90°/s, respectively, 
and the density of the ground plane was either held constant at 
2.5 elements/m2 or varied randomly between 0.1 and 2.5 elements/
m2. The stimulus was rendered as a red- green anaglyph and projected 
onto the screen in front of the subject’s eyes. Subjects wore goggles 
fitted with Kodak Wratten filters to view the stimulus. The task was 
to steer to a random target location that was cued for 300 ms at the 
beginning of the trial. Each trial was programmed to start after a 
variable random delay between 0.5 and 1.1 s following the end of the 
last trial. The target was a circular disc with a radius of 20 cm, match-
ing the luminance of the texture elements. It appeared at a random 
location between −35 and +35° of visual angle and at a distance of 
100 to 400 cm relative to the subject at the beginning of the trial. 
Monkeys received a drop of juice if their stopping position was 
within 65 cm away from the center of the target. No juice was pro-
vided otherwise.

Task modeling
We modeled this task as a POMDP (28) for RL agents, containing a 
state space S, an action space A, a transition probability T, a reward 
function R, an observation space Ω, an observation probability O, 
and a temporal discount factor γ = 0.97 over steps within a trial.
State
Each state st ∈ S is a vector [sxt, syt, sθt, svt, sωt, gxt, gyt]

⊤ containing the 
agent’s x and y positions (centimeters), head direction (degrees), linear 
and angular velocities (centimeter per second, degree per second), and 
the target’s x and y positions (centimeters). The initial state of each 
trial was defined as s0 = [0,0,90,0,0, gx0

, gy0
]⊤, since the agent always 

starts from the origin facing forward (90°). The target location was 
uniformly sampled on the ground plane before the agent, with the 
radius gr ∈ [100 cm,400 cm] and the angle gθ ∈ [90° − 35°,90° + 35°] 
relative to the agent’s initial location. Specifically, angles were drawn 
uniformly within the field of view, gθ ∼ 𝒰(55°,125°), and we sampled 
radial distances as gr ∼

√
�(1002, 4002) to ensure a spatially uniform 

distribution in two dimensions (2D). Target positions in Cartesian 
coordinates are then gx0

 = gr cos (gθ), gy0
 = gr sin (gθ).

Action
Each action at ∈ A is a vector [avt, aωt

]⊤ containing the agent’s linear 
and angular joystick actions, bounded in [−1,1] for each component.
Transition
State transitions st+1 ∼ T(st+1 ∣ st, at) were defined as st+1 = fenv(st, at) +  
ηt, where

and zero- mean independent Gaussian process noise added to the 
velocities

with SD σa = [σav, σaω
]⊤. The operator diag(·) constructs a diagonal 

matrix with its vector argument on the diagonal. The time step is 
Δt = 0.1 s. Joystick gain G = [Gv, Gω]⊤ = [200 cm/s, 90°/s]⊤ maps 
dimensionless linear and angular joystick actions to units of veloci-
ties. Gain multiplier n scales G. Linear and angular perturbation 
velocities are pvt and pωt.
Reward
The reward function R(st, at) maps a state- action pair to a scalar rt. We 
firstly defined an action threshold a* = 0.1 to distinguish between 
when the agent had not yet begun moving and when they moved and 
stopped: The agent must increase the magnitude of at least one action 
component above a* in the beginning (start criterion), and then the 
agent must reduce the magnitude of both action components below a* 
to indicate a stop (stop criterion). Nonzero rewards were only offered 
in the last step of each trial and if the agent satisfied both criteria. For 
the nonzero rewards, we defined dt = [sxt, syt]

⊤ − [gxt, gyt]
⊤ as the dis-

placement between the agent’s and the target’s locations, and a reward 
rt = 10 would be given if the Euclidean distance ∥dt∥2 was smaller 
than the radius of the reward zone d* = 65 cm. To facilitate training in 
the early stages, we allowed a small reward rt = 10exp(−0.5d⊤

t
Σ−1
r
d
t
) 

if the agent stopped outside the reward zone, where Σr = (d*/1.5)2I2 is 
a constant matrix, and I2 denotes the identity matrix of size 2.
Done
A trial ended when the agent stopped, or if t exceeded the maximum 
trial duration 3.4 s. For later convenience, let Dt denote a trial com-
pletion flag that equals 1 if the trial is done at t otherwise 0. A new 
trial thereafter started with a new sampled initial state s0.
Observation
ot ∈ Ω is a vector [ovt, oωt

, ogx,t, ogy,t]
⊤ containing observations of the 

agent’s linear and angular velocities through optic flow and the tar-
get’s x and y positions when visible in the first 0.3 s of each trial. ot ∼ 
O(ot ∣ st) was defined as

where ζt is a zero- mean Gaussian observation noise, and the observa-
tion model Ht is a 4 × 7 matrix filled mostly with zeros, except for a 
few observable elements depending on the time within a trial: When 
t ≤ 0.3 s, the target is visible, so H1,4, H2,5, H3,6, and H4,7 are equal to 
1, where superscripts denote row and column; after t = 0.3 s, the tar-
get disappears and only the optic flow is observable, so only H1,4 and 
H2,5 are 1. For the observation noise, ζ0 = 0, ζt>0 = [ζvt, ζωt

,0,0]⊤, 
where ζvt and ζωt

 denote linear and angular observation noises, and 
[ζvt , ζωt

]⊤ ∼�
[
0, diag(σ2

o
)
]
 with SD σo = [σov, σoω

]⊤.

Task parameters
Training task
The gain multiplier in Eq. 1 is given by n = 1. There were no perturba-
tions, so for any t, pvt = pωt = 0. Process and observation noise SDs 
were in units of G, i.e., σa = αaG and σo = αoG. αa, αo ∈ {0,0.1,0.2,0.3} 
were used in Fig. 7. αa = 0.4 and αo = 0.1 were used in fig. S2 (C and 
D). αa = 0.2 and αo = 0.1 were used to train agents for all other figures.
Gain task
The gain multiplier n was increased to values greater than 1 for n× 
gain. The gain for each analysis was specified in its caption. Noise 

fenv(st , at) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sxt +Δt svt cossθt

syt +Δt svt sinsθt

sθt +Δt sωt

nGvavt +pvt

nGωaωt
+pωt

gxt

gyt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

ηt = [0, 0, 0, ηvt , ηωt
, 0, 0]⊤, [ηvt , ηωt

]⊤ ∼�
[
0, diag(σ2

a
)
]

ot = Htst + ζt (2)
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SDs were also multiplied by the same gains, i.e., σa = αanG, σo = 
αonG. There were no perturbations.
Perturbation task
Parameters n, σa, and σo were the same as those in the training task. 
There were three perturbation parameters sampled for each trial: 
perturbation peak time relative to the trial start tp and perturbation 
linear and angular peaks pvpeak and pwpeak. These parameters were 
sampled from the ranges specified in the caption for each analysis. 
The sampled perturbation parameters determined Gaussian- shaped 
linear and angular perturbations in Eq. 1, defined as

Belief modeling
The state st is partially observable in our task; therefore, an agent can-
not make a good decision only based on the current sensory inputs. 
Instead, it benefits from maintaining a belief state representation bt, 
which is a posterior of st, for decision- making. We considered both a 
model- based inference method and a gradient- based optimization 
method to model the belief.
Recursive Bayesian estimation
When the transition probability T and the observation probability O 
are known, the belief is a posterior of st given all available observa-
tions and actions, i.e., bt = p(st ∣ o0:t, a0:t−1), and can be inferred re-
cursively as

where C = p(ot ∣ o0:t−1, a0:t−1) is a normalization constant, and bt−1 = 
p(st−1 ∣ o0:t−1, a0:t−2).
EKF belief
When all variables are Gaussian in the recursive Bayesian estimation 
and T is nonlinear, the EKF (31) is a tractable method that uses a 
local linearization to approximate Eq. 3. The belief here is a Gaussian 
density bt =�(̂st , Pt) . To simplify the computation here, we express 
position in relative coordinates by letting the initial belief mean be 
�s0 = [�sx0 ,�sy0 ,�sθ0 ,�sv0 ,�sω0

]⊤ = [−gx0 , −gy0 , 90, 0, 0]
⊤ and let the state 

transition fenv contain the first five equations in Eq. 1 to reduce the 
dimensionality of the state by two. Let ϵ denote a small number 10−8, 
we defined the initial belief covariance P0 = ϵI5. Let a 5 × 5 matrix Σa 
denote the Gaussian process noise covariance filled with 0 except 
Σ4,4
a

= σ2
av

 , Σ5,5
a

= σ2
aω

 . The observation’s dimensionality was reduced 
by two by omitting the target location, yielding ot = [ovt, oωt

]⊤. The 
observation model H in Eq. 2 then becomes a 2 × 5 matrix filled 
with 0, except H1,4 = H2,5 = 1. Let Σo = diag(σ2

o
) denote the Gaussian 

observation noise covariance. Any 0 variance components were re-
placed with a minimal variance of ϵ for Σa, Σo.

fenv at bt−1 =�(̂s
t−1, Pt−1) was locally linearized as

The EKF’s prediction step (Eq. 4) uses at−1 to get a predicted be-
lief bt∣t−1. Note that given our At−1, velocity variance elements in the 
prediction P4,4

t∣t−1
, P5,5

t∣t−1
 only depend on Σa and independent of Pt−1.

The EKF’s update step (Eq. 5) uses bt∣t−1 and ot to get the final 
belief bt =�(̂st , Pt) . Kt is known as the Kalman gain which specifies 
the relative weights of prediction and observation. Mathematically, 
because only velocity components are observable and predicted ve-
locity components are independent of Pt−1, Kt is determined solely 
by Σa and Σo and is independent of Pt−1 in our task

RNN belief
When the transition and the observation probabilities T, O are un-
known to the agent, to support decision- making, an internal belief 
could be formed via gradient- based optimization. We used RNNs to 
integrate partial observations ot and motor efference copies at−1 over 
time, trained end- to- end using the RL objective in our task (see be-
low). RNN’s belief bt resides in its hidden state ht. Each RNN main-
tains a hidden state ht = fRNN(ot, at−1, ht−1) or ht = fRNN(ot, at−1, ht−1, 
at) depending on its inputs (Fig. 8, A and B). bt encoded implicitly in 
ht is used by other neurons to compute at or Qt in the actor or critic.

RL with EKF beliefs
Our RL algorithm for training the EKF agent with an EKF belief (used 
for Fig. 2B) is based on an actor- critic approach called the twin delayed 
deep deterministic policy gradient (TD3) (29), referred to as EKF- TD3. 
We first computed beliefs using EKF as described above and then 
trained neural networks to use those beliefs as inputs to guide actions.
Networks
Each agent has two critics with identical architectures but different ini-
tial weights to address the maximization bias in value estimation [see 
the “Critic update” section below and (51)], although in the Results we 
only showed one of the critics used to train the actor to generate ac-
tions. Let it denote the state- related inputs. All neural networks in an 
EKF agent were feed- forward, provided with the mean and covariance 
of bt computed by the EKF, i.e., it = {̂st , Pt} . The actor and two critics 
are ̂at = πμ(it) , Qt1 = 𝒬ν1(it, at), and Qt2 = 𝒬ν2(it, at), where μ, ν1, and ν2 
denote neural parameters.
Exploration
Since our actor is a deterministic function, to realize exploration in 
training, we combined the actor’s output ̂at = πμ(it) with a zero- mean 
Gaussian exploration noise βt and clipped the sum to the box [−1,1]

To ensure that the agent can properly stop without noise vari-
ability, we let βt = 0 if ̂at is below the action threshold. After training, 
we also let βt = 0, so at = ât.
Experience replay
Instead of learning on the current trial, we used off- policy RL by 
storing experience in a replay buffer ℬ and frequently sampling data 
from ℬ to train the agent. At each state st, the EKF computed it 
for the actor to generate at following Eq. 6. The agent observed the 

bt =
1

C
O(ot ∣ st) ∫

st−1

T(st ∣ st−1, at−1)bt−1 dst−1 (3)

At−1 =
�fenv

�ŝt−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 − ŝvt−1Δtsin̂sθt−1 Δtcoŝsθt−1 0

0 1 ŝvt−1Δtcoŝsθt−1 Δtsin̂sθt−1 0

0 0 1 0 Δt

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

�s
t∣t−1 = fenv(�st−1, at−1)

P
t∣t−1=A

t−1Pt−1A
⊤

t−1
+Σ

a

(4)

K
t
=P

t∣t−1H
⊤(HP

t∣t−1H
⊤+Σ

o
)−1

�s
t
=�s

t∣t−1+K
t
(o

t
−H�s

t∣t−1)

Pt = (I5−KtH)Pt∣t−1

(5)

at = clip(ât +β
t
, −1, 1), β

t
∼�(0, σ2

exp
I2) (6)
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reward rt, next input it+1, and trial completion flag Dt and stored the 
one- step transition tuple (it, at, rt, it+1, Dt) in ℬ. The buffer ℬ had a 
capacity of 1.6 × 106 transitions, storing data on a first- in, first- out 
(FIFO) basis. Furthermore, we augmented the experience by also 
storing the mirror transition (̂�t , ât , rt , �̂t+1,Dt) generated by reflect-
ing the original data across the y axis.
Target networks
The learning of value in TD3 is akin to deep Q- learning (34). Using 
the Bellman equation, ideally, the agent can learn to estimate the 
value 𝒬νj(it, at) by regressing the learning target yt = rt + γ𝒬νj[it+1, 
πμ(it+1)], i.e., the one- step bootstrapping of the value after receiving 
the reward rt, observing the next input it+1, and estimating the next 
action πμ(it+1). One stability issue here is that the neural parameters 
for optimization are also used to construct the learning target yt, 
which changes at each learning step. To obtain a more stable yt, we 
thus maintained a copy of actor and critic networks with more slowly 
changing parameters μ′ and νj′ used in yt, referred to as target actor 
and critic networks. These parameters were initialized to be the 
same as μ, νj and passed through an exponential moving average

We used τ = 0.005.
Critic update
We sampled a batch of M = 256 transitions from the buffer each time

where the temporal subscript is omitted, and i′(k) denotes the next 
input after i(k). The next action given i′(k) was estimated by the target 
actor network as

where β′(k) is small zero- mean Gaussian noise clipped to [−0.1,0.1] 
to smooth the action estimation.

The learning target y(k) used the smaller value estimation be-
tween two target critics to reduce the maximization bias (51) and 
was truncated at the end of each trial [D(k) = 1]. The learning objec-
tive of the two critics, J(νj), j = 1,2, was to regress the learning target 
y(k), defined as

The gradient ∇νjJ(νj) was computed by BP. Critic parameters νj were 
updated (see the “Agent training” section below for optimizers) using 
∇νjJ(νj) to minimize J(νj).
Actor update
The actor’s parameter μ was updated once for every two critic up-
dates. The actor’s learning objective J(μ) was to maximize the value 
of the first critic, defined as

The gradient ∇μJ(μ) was computed by BP. The actor parameter μ 
was updated using ∇μJ(μ) to maximize J(μ). Note that the critic pa-
rameter ν1 was not updated here. A diagram illustrating the critic 
and actor update is shown in fig. S1 (A and B).

RL with RNN beliefs
We developed a memory- based TD3 model leveraging RNNs to 
construct a form of internal beliefs to tackle POMDPs, referred to as 
RNN- TD3. All agents except the EKF agent were trained by this 
algorithm.
Networks
Let it = {ot, at−1} and ht denote the state- related inputs and the RNN’s 
hidden state. The actor and two critics are {ât , h

μ

t } = πμ(it , h
μ

t−1
) , 

{Qtj
, h

νj

t } = �νj
(it , at , h

νj

t−1
), j = 1, 2 , where networks’ beliefs are im-

plicitly encoded in all ht evolving over time. At the beginning of 
each trial, ht−1 and at−1 were initialized to zeros. For simplicity, we 
drop ht in our notations for all networks’ outputs.
Exploration
Similar to that of EKF- TD3 (Eq. 6), we added zero- mean Gaussian 
exploration noise to the output of the actor ât = πμ(it , h

μ

t−1
) if the 

output is above the action threshold

After training, we let βt = 0.
Experience replay
Similar to that of EKF- TD3 but rather than storing one- step transi-
tion tuples, the replay buffer ℬ stored the whole trajectory for each 
trial of N time steps

and its mirror image, because RNNs have hidden states ht generally 
depend on the entire history of inputs, not just the most recent ones. 
Each action was obtained using Eq. 11. The FIFO buffer had a capac-
ity of 105 trajectories.
Target networks
Same as that of EKF- TD3.
Critic update
Similar to that of EKF- TD3, but critics here also needed to learn the 
temporal structure. Since the trial duration N varies across trials, we 
first sampled a trial duration Ñ from the buffer ℬ and then sampled 
a batch of M = 16 trajectories with the same duration Ñ

where i�(k)
t

= i
(k)

t+1
 . The next action a′(k)

t
 , the learning target y(k)t  , and 

the learning objective of the two critics J(νj) were
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The gradient ∇νjJ(νj) was computed by BP through time (BPTT). 
Critic parameters νj were updated using ∇νjJ(νj) to minimize J(νj).
Actor update
Similar to that of EKF- TD3, but the actor here needed to learn the 
temporal structure. The actor’s learning objective J(μ) was

The gradient ∇μJ(μ) was computed by BPTT. The actor parame-
ters μ were updated using ∇μJ(μ) to maximize J(μ).

Agent training
All network parameters μ, ν1, and  ν2 were updated by the Adam 
optimizers (52). Optimizer parameters were set as follows: learning 
rates annealed from 3 × 10−4 to 5 × 10−5, exponential decay rates for 
the first and second moment estimates = 0.9,0.999, a constant added 
in denominators for numerical stability =1.5 × 10−4, and weight de-
cay = 0. The critics were updated once for every c = 4 interactions 
with the environment. The actor was updated once for every two 
critic updates.

During training, we periodically validated the agent’s perfor-
mance with 300 validation trials and used the moments when the 
agent achieved 20 and 80% accuracy to split the whole training 
course into three phases. The learning rates for the actor and critics, 
the exploration noise σexp (Eqs. 6 and 11), and the observation noise 
σo (Eq. 2) in each phase were set as follows: In phase 1, learning rates 
were 3 × 10−4, σexp = 0.8, and σo = 0. In phase 2, learning rates were 
3 × 10−4, σexp = 0.5, and σo = αoG, where αo is defined in the training 
task. In phase 3, learning rates were 5 × 10−5, σexp = 0.4, and σo = 
αoG. Training was stopped after the agent had experienced 105 trials 
after phase 1 (extensive training) for Fig. 8 and figs. S2 (E and F) and 
S7 to S9 or 104 trials after phase 1 (default training) for the remain-
ing agents. We summarize the EKF/RNN- TD3 algorithms in algo-
rithm S1 and hyperparameters in table S1.

Agent testing and TD errors
During testing, the target networks were no longer used. The trained 
actor πμ was used to interact with the environment and generate 
transition tuples (it , at , rt , i′t ,Dt) for each t. No exploration noise was 
added to the output of the actor.

The TD error shown in analyses is similar to the learning objec-
tive for critics (Eq. 13), except that the target networks were replaced 
with the trained networks, and only the first critic was used. Specifi-
cally, for each t, the next action is a�

t
= πμ(i

�
t
, h

μ

t ) , and the TD error is 
given by

Agent selection
After training phase 1, in every 500 training trials, we saved neural 
parameters of each network. To fairly compare agents’ performance 
in each task (training, gain, and perturbation), we tested all sets of 
stored parameters (without exploration noise) for each task using one 
or multiple test sets, with 500 trials (for agents that underwent default 
training) or 300 trials (for agents that underwent extensive training) 
each. We then endowed each agent with the neural parameters that 
allowed it to achieve the highest reward rate averaged across test sets 
for each task.

The test sets used for each task are as follows. Training task: One 
test set with the training task’s parameters. Gain task: Three or four 
test sets with the gain = 1×,1.5×,2× (default training) or 1×,2×,3×,4× 
(extensive training). Perturbation task: Two test sets for agents that 
underwent default training, one without perturbation and the other 
with perturbation parameters identical to those in Fig.  6C. For 
agents that underwent extensive training, an additional test set was 
included, with perturbation ranges identical to those in Fig. 8D.

Agent architectures
Although all agents had two architecturally identical critics, we only 
showed one in Figs. 1E and 8A. All RNNs were implemented as long 
short- term memory (LSTM) networks (53), as we observed that agents 
with LSTMs were much easier to train than those with vanilla RNNs. 
Agents with vanilla RNNs encountered learning failures most of the 
time. In contrast to LSTMs, the training of vanilla RNNs proves to be 
unstable, primarily because they struggle with managing long- term 
dependencies and are susceptible to vanishing/exploding gradient 
problems (53). These inherent difficulties may be exacerbated with RL, 
as the learning target for the critic network is bootstrapped by the critic 
itself (see above). Consequently, critic updates are preferable to be 
stable to ensure a more stable learning target. Previous work using 
RNNs within critics consistently chose RNNs with gating mechanisms 
(39, 54–56). It remains a prospect for future research to investigate the 
impact of the gating inductive bias in RL.

All MLP layers linearly transformed inputs and then applied recti-
fied linear unit (ReLU) nonlinearities. The output of critics Qt was pro-
duced by a linear unit without any nonlinearity; the linear and angular 
control outputs of the actors at were bounded to [−1,1] by hyperbolic 
tangent nonlinearities. In the holistic critic/actor (Fig. 8, A and B), 
there were 220 LSTM units. In all other architectures in Fig. 8 (A and 
B), each RNN module had 128 LSTM units, and each MLP module 
contained two layers with 300 ReLU units in each. All architectures, 
as a result, had a similar number of parameters (fig. S9A).

The EKF agent’s actor and two critics used the same architecture 
consisting of an MLP module with two layers, each with 300 ReLU 
units. The holistic EKF agent used an actor architecture identical to 
the EKF agent’s actor and a holistic critic architecture.

No generalization hypothesis
For each gain trial with a gain nG for n > 1 or for each perturbation 
trial with nonzero perturbation velocities pvt, pwt, the hypothetical no 
generalization trajectory was obtained as follows. We first recorded 
the agent/monkey’s sequential actions (a0, a1, …, aN−1) in the training 
task (1× gain, no perturbations) navigating to the same target (for 
agents) or the closest target in the dataset (for monkeys). We then 
regenerated a new trajectory using (a0, a1, …, aN−1) following the en-
vironmental transition (Eq. 1, process noise ηt = 0), but with the gain 
multiplier n for the gain task or the perturbation velocities pvt, pwt for 
the perturbation task.

Under/overshooting definition using idealized 
circular trajectories
To determine when an agent or a monkey under-  or overshot the 
target in the gain task, we asked whether its stop location exceeded 
the target location in the distance along their corresponding ideal-
ized circular trajectories. Specifically, given an arbitrary endpoint 
[�x, �y]⊤ , the circular trajectory connecting it from a forward heading 
(90°, initial head direction) at the origin (start location) has a radius 
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as a function of this point R̃(x̃, ỹ) . The arc length of this trajectory is 
a function

We deemed the agent’s stop location [sxN−1, syN−1]⊤ to have over-
shot the target [gx, gy]⊤ if L(sxN−1, syN−1) > L(gx, gy), otherwise it 
undershot.

Trajectory length and curvature
We approximated the length l̃  and the curvature k̃t of a trajectory 
(sxt, syt)t=0,⋯,N−1 as follows

where first derivatives sxt
′, syt

′ and second derivatives sxt
′′, syt

′′ were 
estimated using first- order one- sided differences for the first and last 
points and second- order central differences for interior points. In 
each trial, we excluded curvatures that surpassed the 95th percentile 
at any step, considering them as outlier values. Note that the monkeys’ 
trajectories here were downsampled to have the same 0.1- s time step 
as the agents’ trajectories.

Spatial tuning
We obtained the approximate spatial tuning of each neuron by 
linearly interpolating its activity and the agent’s x and y location 
using data from each step across trials, followed by a convolution 
over the 2D space using a boxcar filter with a height and a 
width of 40 cm.

Neural decoding
While agents were being tested, we recorded their sensory, latent, 
and motor variables for the analyses in Fig. 1L and fig. S1F and their 
positions sxt, syt for all other decoding analyses. We also recorded 
their neural activities in each module for both their actors and crit-
ics. Let S denote a partitioned matrix where rows are time steps and 
columns are decoding target variables, e.g., [sx, sy] for agent’s posi-
tions. Recorded neural activities X were concatenated over time, 
where rows are time steps and columns are units. A linear decoder 
regressed S on X, whose partitioned parameters for all decoding 
variables W were obtained by the ridge estimator following

where λ is a penalty term chosen from {0.1,1,10} by cross- validation. 
We always used 70% trials in the dataset to train the decoder and 
used the remaining 30% trials to test the decoder’s predictions.

The decoding error of the belief in each trial was defined as

where ŝxt , ŝyt are predicted x and y positions.

Statistical analysis
All agents were trained with eight different random seeds, which 
determined the initialized neural network parameters and random 
variables in training (e.g., process and observation noises, agent’s 
initial state, exploration noise, and sampling from the buffer). All 
analyses for agents included data from training runs with all ran-
dom seeds unless otherwise noted. We reported mean, SD, SEM, or 
confidence interval (CI) throughout the paper. All correlations were 
quantified by Pearson’s r.

In all violin plots, we determined upper and lower whiskers fol-
lowing q1 − whis · (q3 − q1) and q1 + whis · (q3 − q1), where q1 and 
q3 are the first and third quartiles, and whis = 1.5 (57). We did not 
plot outliers beyond the whisker range for better visualization, but 
we did not exclude them in quantification.
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Supplementary text
Figs. S1 to S9
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Algorithm S1
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D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

https://arxiv.org/abs/1901.10912
https://arxiv.org/abs/1806.01261


Zhang et al., Sci. Adv. 10, eadk1256 (2024)     19 July 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

21 of 21

 21. K. J. lakshminarasimhan, e. Avila, X. Pitkow, d. e. Angelaki, dynamical latent state 
computation in the male macaque posterior parietal cortex. Nat. Commun. 14, 1832 (2023).

 22. M. Watabe- Uchida, n. eshel, n. Uchida, neural circuitry of reward prediction error. Annu. 
Rev. Neurosci. 40, 373–394 (2017).

 23. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (Mit press, 2018).
 24. R. e. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 

35–45 (1960).
 25. J.- P. noel, B. caziot, S. Bruni, n. e. Fitzgerald, e. Avila, d. e. Angelaki, Supporting 

generalization in non- human primate behavior by tapping into structural knowledge: 
examples from sensorimotor mappings, inference, and decision- making. Prog. Neurobiol. 
201, 101996 (2021).

 26. P. Alefantis, K. J. lakshminarasimhan, e. Avila, J.- P. noel, X. Pitkow, d. e. Angelaki, Sensory 
evidence accumulation using optic flow in a naturalistic navigation task. J. Neurosci. 42, 
5451–5462 (2022).

 27. J.- P. noel, e. Balzani, e. Avila, K. J. lakshminarasimhan, S. Bruni, P. Alefantis, c. Savin,  
d. e. Angelaki, coding of latent variables in sensory, parietal, and frontal cortices during 
closed- loop virtual navigation. eLife 11, e80280 (2022).

 28. l. P. Kaelbling, M. l. littman, A. R. cassandra, Planning and acting in partially observable 
stochastic domains. Artif. Intell. 101, 99–134 (1998).

 29. S. Fujimoto, h. hoof, d. Meger, Addressing function approximation error in actor- critic 
methods. Proc. Mach. Learn. Res. 80, 1587–1596 (2018).

 30. e. Balzani, K. lakshminarasimhan, d. Angelaki, c. Savin, efficient estimation of neural 
tuning during naturalistic behavior. Adv. Neural. Inf. Process. Syst. 33, 12604–12614 (2020).

 31. G. A. einicke, l. B. White, Robust extended Kalman filtering. IEEE Trans. Signal Process. 47, 
2596–2599 (1999).

 32. c. M. Bishop, training with noise is equivalent to tikhonov regularization. Neural Comput. 
7, 108–116 (1995).

 33. n. R. Ke, A. didolkar, S. Mittal, A. Goyal, G. lajoie, S. Bauer, d. Rezende, Y. Bengio, M. Mozer, 
c. Pal, Systematic evaluation of causal discovery in visual model based reinforcement 
learning. arXiv:2107.00848 [stat.Ml] (2021).

 34. v. Mnih, K. Kavukcuoglu, d. Silver, A. A. Rusu, J. veness, M. G. Bellemare, A. Graves,  
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, c. Beattie, A. Sadik, i. Antonoglou, 
h. King, d. Kumaran, d. Wierstra, S. legg, d. hassabis, human- level control through deep 
reinforcement learning. Nature 518, 529–533 (2015).

 35. K. l. Stachenfeld, M. M. Botvinick, S. J. Gershman, the hippocampus as a predictive map. 
Nat. Neurosci. 20, 1643–1653 (2017).

 36. A. Barreto, d. Borsa, J. Quan, t. Schaul, d. Silver, M. hessel, d. Mankowitz, A. Zidek,  
R. Munos, transfer in deep reinforcement learning using successor features and 
generalised policy improvement. Proc. Mach. Learn. Res. 80, 501–510 (2018).

 37. J. X. Wang, Z. Kurth- nelson, d. Kumaran, d. tirumala, h. Soyer, J. Z. leibo, d. hassabis,  
M. Botvinick, Prefrontal cortex as a meta- reinforcement learning system. Nat. Neurosci. 
21, 860–868 (2018).

 38. M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth- nelson, c. Blundell, d. hassabis, Reinforcement 
learning, fast and slow. Trends Cogn. Sci. 23, 408–422 (2019).

 39. J. A. hennig, S. A. Romero Pinto, t. Yamaguchi, S. W. linderman, n. Uchida, S. J. Gershman, 
emergence of belief- like representations through reinforcement learning. PLoS Comput. 
Biol. 19, e1011067 (2023).

 40. J. Merel, d. Aldarondo, J. Marshall, Y. tassa, G. Wayne, B. Ölveczky, deep neuroethology of 
a virtual rodent. arXiv:1911.09451 [q- bio.nc] (2019).

 41. v. Mikulik, G. delétang, t. McGrath, t. Genewein, M. Martic, S. legg, P. Ortega, 
Meta- trained agents implement bayes- optimal agents. Adv. Neural. Inf. Process. Syst. 33, 
18691–18703 (2020).

 42. S. h. Singh, F. van Breugel, R. P. Rao, B. W. Brunton, emergent behaviour and neural 
dynamics in artificial agents tracking odour plumes. Nat. Mach. Intell. 5, 58–70 (2023).

 43. t. Xu, O. Barak, implementing inductive bias for different navigation tasks through 
diverse rnn attractors. arXiv:2002.02496 [q- bio.nc] (2020).

 44. A. Zador, S. escola, B. Richards, B. Ölveczky, Y. Bengio, K. Boahen, M. Botvinick,  
d. chklovskii, A. churchland, c. clopath, J. d. carlo, S. Ganguli, J. hawkins, K. Körding,  
A. Koulakov, Y. l. cun, t. lillicrap, A. Marblestone, B. Olshausen, A. Pouget, c. Savin,  

t. Sejnowski, e. Simoncelli, S. Solla, d. Sussillo, A. S. tolias, d. tsao, catalyzing next- 
generation artificial intelligence through neuroAi. Nat. Commun. 14, 1597 (2023).

 45. P. W. Glimcher, Understanding dopamine and reinforcement learning: the dopamine 
reward prediction error hypothesis. Proc. Natl. Acad. Sci. U.S.A. 108, 15647–15654 (2011).

 46. B. B. doll, d. A. Simon, n. d. daw, the ubiquity of model- based reinforcement learning. 
Curr. Opin. Neurobiol. 22, 1075–1081 (2012).

 47. d. Bennett, Y. niv, A. J. langdon, value- free reinforcement learning: Policy optimization as 
a minimal model of operant behavior. Curr. Opin. Behav. Sci. 41, 114–121 (2021).

 48. W.- c. Jiang, S. Xu, J. t. dudman, hippocampal representations of foraging trajectories 
depend upon spatial context. Nat. Neurosci. 25, 1693–1705 (2022).

 49. c. dan, B. K. hulse, R. Kappagantula, v. Jayaraman, A. M. hermundstad, A neural circuit 
architecture for rapid behavioral flexibility in goal- directed navigation. bioRxiv 456004 
[Preprint] (2021). https://doi.org/10.1101/2021.08.18.456004.

 50. M. hadjiosif, J. W. Krakauer, A. M. haith, did we get sensorimotor adaptation wrong? 
implicit adaptation as direct policy updating rather than forward- model- based learning. 
J. Neurosci. 41, 2747–2761 (2021).

 51. S. thrun, A. Schwartz, issues in using function approximation for reinforcement learning, 
in Proceedings of the 1993 Connectionist Models Summer School (Psychol. dent. Press, 
2014), pp. 255–263.

 52. d. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 [cs.lG] 
(2014).

 53. S. hochreiter, J. Schmidhuber, long short- term memory. Neural Comput. 9, 1735–1780 
(1997).

 54. M. hausknecht, P. Stone, deep recurrent q- learning for partially observable mdps. 
arXiv:1507.06527 [cs.lG] (2015).

 55. B. Bakker, Reinforcement learning with long short- term memory. Adv. Neural. Inf. Process. 
Syst. 14, 1475–1482 (2002).

 56. B. Bakker, Reinforcement learning by backpropagation through an lStM model/critic, in 
2007 IEEE International Symposium on Approximate Dynamic Programming and 
Reinforcement Learning (ieee, 2007), pp. 127–134.

 57. J. W. tukey, Exploratory Data Analysis (Springer, 1977).
 58. h. tang, R. houthooft, d. Foote, A. Stooke, X. chen, Y. duan, J. Schulman, F. deturck,  

P. Abbeel, #exploration: A study of count- based exploration for deep reinforcement 
learning. Adv. Neural. Inf. Process. Syst. 30, 2750–2759 (2017).

 59. A. Stavropoulos, K. J. lakshminarasimhan, J. laurens, X. Pitkow, d. e. Angelaki, influence 
of sensory modality and control dynamics on human path integration. eLife 11, e63405 
(2022).

 60. A. Stavropoulos, K. J. lakshminarasimhan, d. e. Angelaki, Belief embodiment through eye 
movements facilitates memory- guided navigation. bioRxiv 554107 [Preprint] (2023). 
https://doi.org/10.1101/2023.08.21.554107.

Acknowledgments: We express our greatest appreciation to K. lakshminarasimhan for useful 
discussions. Funding: this work was supported by national institutes of health grants U19 
nS118246 (d.e.A.) and R01 nS120407 (X.P.). Author contributions: conceptualization and 
methodology: R.Z., X.P., and d.e.A. investigation: R.Z. visualization: R.Z. and X.P. Supervision: 
X.P. and d.e.A. Writing—original draft: R.Z. Writing—review and editing: R.Z., X.P., and d.e.A. 
Funding acquisition: X.P. and d.e.A. Competing interests: X.P. is a founder of Upload Ai llc, a 
company in which he has related financial interests. All other authors declare that they have 
no competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. to 
reproduce the results and figures, codes, data, and detailed instructions are available on 
Github https://github.com/ryzhang1/inductive_bias. the codes have also been archived at 
https://zenodo.org/doi/10.5281/zenodo.10957521, and the data have been archived at https://
doi.org/10.5061/dryad.jdfn2z3j3.

Submitted 3 August 2023 
Accepted 14 June 2024 
Published 19 July 2024 
10.1126/sciadv.adk1256

D
ow

nloaded from
 https://w

w
w

.science.org on July 19, 2024

https://arxiv.org/abs/2107.00848
https://arxiv.org/abs/1911.09451
https://arxiv.org/abs/2002.02496
http://dx.doi.org/10.1101/2021.08.18.456004
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1507.06527
http://dx.doi.org/10.1101/2023.08.21.554107
https://github.com/ryzhang1/Inductive_bias
https://zenodo.org/doi/10.5281/zenodo.10957521
https://doi.org/10.5061/dryad.jdfn2z3j3
https://doi.org/10.5061/dryad.jdfn2z3j3

	Inductive biases of neural network modularity in spatial navigation
	INTRODUCTION
	RESULTS
	RL agents trained to navigate using partial and noisy sensory cues
	Different architectures, different beliefs and actions
	Gain task: Generalization to previously unencountered sensorimotor mappings
	Generalization in the gain task, facilitated by agents’ belief accuracy
	Perturbation task: Generalization to passive motions, facilitated by belief accuracy
	Generalization contingent on learned Kalman gain
	More architectures using less specialized modules

	DISCUSSION
	Reasons for the benefits of modularization
	Generalization but NFL
	Limitation and future directions

	MATERIALS AND METHODS
	Task
	Task modeling
	State
	Action
	Transition
	Reward
	Done
	Observation

	Task parameters
	Training task
	Gain task
	Perturbation task

	Belief modeling
	Recursive Bayesian estimation
	EKF belief
	RNN belief

	RL with EKF beliefs
	Networks
	Exploration
	Experience replay
	Target networks
	Critic update
	Actor update

	RL with RNN beliefs
	Networks
	Exploration
	Experience replay
	Target networks
	Critic update
	Actor update

	Agent training
	Agent testing and TD errors
	Agent selection
	Agent architectures
	No generalization hypothesis
	Under/overshooting definition using idealized circular trajectories
	Trajectory length and curvature
	Spatial tuning
	Neural decoding
	Statistical analysis

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


