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Foundation model of neural activity predicts 
response to new stimulus types

Eric Y. Wang1,2, Paul G. Fahey1,2,3,4,5, Zhuokun Ding1,2,3,4,5, Stelios Papadopoulos1,2,3,4,5, 
Kayla Ponder1,2, Marissa A. Weis6, Andersen Chang1,2, Taliah Muhammad1,2,  
Saumil Patel1,2,3,4,5, Zhiwei Ding1,2, Dat Tran1,2, Jiakun Fu1,2, Casey M. Schneider-Mizell7, 
MICrONS Consortium*, R. Clay Reid7, Forrest Collman7, Nuno Maçarico da Costa7, 
Katrin Franke1,2,3,4,5, Alexander S. Ecker6,8, Jacob Reimer1,2, Xaq Pitkow1,2,9, Fabian H. Sinz1,2,6,10 
& Andreas S. Tolias1,2,3,4,5,11 ✉

The complexity of neural circuits makes it challenging to decipher the brain’s 
algorithms of intelligence. Recent breakthroughs in deep learning have produced 
models that accurately simulate brain activity, enhancing our understanding of the 
brain’s computational objectives and neural coding. However, it is difficult for such 
models to generalize beyond their training distribution, limiting their utility. The 
emergence of foundation models1 trained on vast datasets has introduced a new 
artificial intelligence paradigm with remarkable generalization capabilities. Here we 
collected large amounts of neural activity from visual cortices of multiple mice and 
trained a foundation model to accurately predict neuronal responses to arbitrary 
natural videos. This model generalized to new mice with minimal training and 
successfully predicted responses across various new stimulus domains, such as 
coherent motion and noise patterns. Beyond neural response prediction, the model 
also accurately predicted anatomical cell types, dendritic features and neuronal 
connectivity within the MICrONS functional connectomics dataset2. Our work is  
a crucial step towards building foundation models of the brain. As neuroscience 
accumulates larger, multimodal datasets, foundation models will reveal statistical 
regularities, enable rapid adaptation to new tasks and accelerate research.

Deep artificial neural networks (ANNs) have revolutionized neurosci-
ence by modelling neural activity based on sensory input, behaviour 
and internal states3–9. Task-driven models, for instance, have provided 
valuable insights into the visual cortex, as their hidden representa-
tions often align with biological neural activity when trained on tasks 
such as object classification or predictive coding10,11. With increasing 
access to large-scale neuroscience datasets, data-driven models are 
surpassing task-driven approaches12, enabling in silico experiments that 
systematically analyse neuronal representations and computational 
principles. In vision research, such approaches help to characterize 
neuronal selectivity13,14 and tuning functions under natural conditions15, 
generating hypotheses for closed-loop experiments such as inception 
loops16. This in silico–in vivo strategy addresses key challenges in neu-
roscience, including high-dimensional inputs, nonlinear processing 
and experimental constraints.

A major challenge in neural network modelling, however, is gener-
alization beyond the original training distribution17. Models trained 
on natural videos predict responses well within that domain but 
struggle with synthetic or parametric stimuli18. Given the historical 

importance of parametric stimuli in vision research19–21, it is crucial  
to develop functional models that generalize across stimulus dom
ains. Recent advancements in artificial intelligence, particularly 
foundation models trained on vast datasets1, offer a solution. These  
models capture robust, transferable representations that general-
ize to novel tasks, as seen in language models trained on diverse text  
corpora22,23.

Inspired by these breakthroughs, we developed a foundation model 
of the mouse visual cortex trained on extensive data to predict neu-
ral activity from dynamic visual stimuli and behaviour. We recorded 
responses to ecological videos from approximately 135,000 neurons 
across multiple visual cortex areas in 14 awake, behaving mice. With a 
subset of these data, we trained a deep neural network on recordings 
from eight mice, producing a ‘foundation core’ that captured shared 
latent representations and predicted neuronal responses across mice 
and cortical areas. Models using this foundation core could be rapidly 
adapted to new mice with minimal data, outperforming individualized 
models trained end-to-end. These models excelled in predicting neu-
ronal responses to both in-domain natural videos and out-of-domain 
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stimuli, including moving dots, flashing dots, Gabor patches, coherent 
noise and static natural images.

To evaluate the broader utility of our model, we assessed its ability 
to predict anatomical features. In the Machine Intelligence from Corti-
cal Networks (MICrONS) dataset2, which contains functional record-
ings and nanoscale anatomy of more than 70,000 neurons, our model 
accurately classified anatomically defined types of excitatory neurons. 
Furthermore, in other MICrONS studies, our model successfully pre-
dicted synaptic connectivity24 and dendritic morphology25.

In summary, we present a foundation model of neural activity that 
not only predicts visual cortex responses but also relates the functional 
properties of neurons to their anatomical features. Our results dem-
onstrate the potential of data-driven foundation models to advance 
systems neuroscience by enabling scalable, generalizable representa-
tions of neural function.

Dynamic functional model of the mouse visual cortex
To model the dynamic neuronal responses of the mouse visual cortex, we 
developed an ANN that comprised of four modules: perspective, modula-
tion, core and readout (Fig. 1). The modular design enabled the ANN to 
accommodate diverse tasks and inputs. For instance, eye movements  
and different positioning of a mouse’s head relative to the monitor can 
result in different perspectives of the same stimulus, despite best efforts 

to limit experimental variability. To account for this, the perspective 
module of our ANN uses ray tracing and eye tracking data to infer the 
perspective of the mouse from the presented stimulus on the monitor 
(Extended Data Fig. 1). To account for behavioural factors that modulate 
the activity of the visual cortex26, the modulation module transforms 
behavioural inputs (locomotion and pupil dilation) to produce dynamic 
representations of the mouse’s behavioural and attentive state (Extended 
Data Fig. 2). The perspective and modulation modules provide visual 
and behavioural inputs, respectively, to the core module of the ANN. 
Composed of feedforward (3D convolution layers) and recurrent (long 
short-term memory) components, the core contains the majority of the 
modelling capacity of the ANN and produces nonlinear representations 
of vision that are modulated by behaviour. These representations are 
mapped onto the activity of individual neurons by the readout module, 
which performs a linear combination of the features generated by the core 
at one specific location, the neuron’s receptive field. All four modules 
of the ANN (perspective, modulation, core and readout) were trained 
end-to-end to predict time series of neuronal responses to natural videos 
(details of model architecture and training are presented in Methods).

First, we evaluated the predictive accuracy of our ANN model archi-
tecture when trained on individual recording sessions lasting around 
1 h. Predictive accuracy was measured by the correlation between the 
recorded and the predicted responses to a novel set of stimuli that 
were not included in model training. To account for in vivo noise, 
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Fig. 1 | ANN model of the visual cortex. Top left, an in vivo recording session  
of excitatory neurons from several areas (V1, LM, RL and AL) and layers (layer 
2/3 (L2/3), layer 4 (L4) and layer 5 (L5)) of the mouse visual cortex. Right, the 
architecture of the ANN model and the flow of information from inputs (visual 
stimulus, eye position, locomotion and pupil size) to outputs (neural activity). 
Underlined labels denote the four main modules of the ANN. For the modulation 
and core, the stacked planes represent feature maps. For the readout, the blue 

boxes represent the output features of the core at the readout position of the 
neuron, and the fanning black lines represent readout feature weights. The top 
of the schematic displays the neural activity for a sampled set of neurons. In vivo 
and in silico responses are shown for two example neurons. Stimulus adapted 
from Sports-1M Dataset (Andrej Karpathy; https://cs.stanford.edu/people/
karpathy/deepvideo/); copyright 2014, IEEE, reprinted with permission from 
IEEE Proceedings, IEEE (CC BY3.0).
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the correlation was normalized by an estimated upper bound on the 
performance that could be achieved by a perfect model27. Using this 
normalized correlation coefficient (CCnorm) as the metric of predictive 
accuracy, we compared our model to the previous best-performing 
dynamic model of the mouse visual cortex18. Trained and tested on 
the same data from that study (dynamic primary visual cortex (V1) 
responses to natural videos), our model showed a 25–46% increase in 
predictive accuracy on held-out test data across the three recording 
sessions used in Sinz et al.18 (Fig. 2a). This level of increase in perfor-
mance is substantial for predictive models of the visual cortex. We also 
evaluated the predictive accuracy of our model on newly collected data 
that contained multiple visual areas (Fig. 2b). Of note, we found that the 
performance of our model for higher visual areas (lateromedial (LM), 
rostrolateral (RL) and anterolateral (AL)) was similar to V1 (Fig. 2c), 
despite the increased complexity of neuronal tuning to more complex 
features exhibited by higher visual areas28,29.

Next, we performed lesion studies to determine the effect that indi-
vidual components of the model had on predictive accuracy (Extended 
Data Fig. 3). Removing either of the 2 behavioural modules resulted 
in a modest but significant reduction in reduced predictive accuracy: 
2.3% reduction for perspective (Extended Data Fig. 3a–e) and 2.8% 
for modulation (Extended Data Fig. 3f–j). For the core component, 
we found that using 3D convolutions in the feedforward component 
significantly improved performance compared to 2D convolutions, 
although the difference was small at 0.88% (Extended Data Fig. 3k–o).  
We also evaluated the objective function used for training and found 
that Poisson negative-log likelihood loss significantly outperformed 
mean squared error loss, with a performance difference of 9.6% 
(Extended Data Fig. 3p–t). In summary, our ANN model sets new stand-
ards for predicting dynamic neuronal responses of the visual cortex, 
with individual components contributing modest but significant 
improvements. Notably, the main driver of increased performance 
is the much larger dataset used for training (Fig. 2b), aligning with  
scaling laws and the observation that ANN performance in general 
improves with increasing data30.

Generalization to new subjects and stimulus domains
The remarkable performance of foundation models in other domains—
for example, natural language22 and image generation23—originates 

from their vast quantities of training data. However, collecting large 
amounts of neuronal data from individual neurons and animals pre-
sents challenges. Individual recording sessions are limited in dura-
tion by experimental factors such as attentiveness and stability of 
the recording device. To overcome this limitation, we combined data 
from multiple recording sessions, resulting in a total of more than 
900 min of natural video responses from 8 mice, 6 visual areas (V1, 
LM, AL, RL, anteromedial (AM) and posteromedial (PM)) and around 
66,000 neurons (Extended Data Table 1). These data were used to train 
a single, shared ANN core (Fig. 3a) with the goal of capturing common 
representations of vision that underlie the dynamic neuronal response 
of the visual cortex for a representative set of neurons and a group 
of mice. This representation could then be used to fit models of new 
mice to improve their performance with limited data. Here we refer to 
the representative group of eight mice as the ‘foundation cohort’, the 
trained ANN component as the ‘foundation core’, and ANNs derived 
from the foundation core as ‘foundation models’.

To evaluate the representation of the visual cortex captured by the 
foundation core, we froze its parameters and transferred it to ANNs 
with new perspective, modulation and readout components fitted 
to new mice (Fig. 3a). Each new mouse was shown an assortment of 
stimuli, designated for either model training or testing. The training 
stimuli consisted of natural videos, and we used different portions 
of this, spanning from 4 min to 76 min, to fit ANN components to the 
new mice. This approach aimed to examine the relationship between 
the models’ performance and the amount of training data for each 
new mouse. The testing stimuli included natural videos that were 
not part of the training set (Fig. 3b′), new stimulus domains such as 
static natural images (Fig. 3c′), and four types of parametric stimuli 
(Fig. 3d′–g′), comprising drifting Gabor filters, flashing Gaussian dots, 
directional pink noise and random dot kinematograms. To test the 
role of the foundation core in prediction performance, we trained a 
set of control models that differed from the foundation models only 
by the core component. For these controls (individual models), all 
four components—core, perspective, modulation and readout—were 
trained end-to-end using training data from a single recording session. 
For the foundation models, training data from the new mice were used 
only to fit the perspective, modulation and readout components, and 
the core was trained on the foundation cohort as described above and 
was frozen (Fig. 3a).
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of our model versus a previous state-of-the-art dynamic model of the mouse 
visual cortex (Sinz et al.18). We trained and tested our model on the same set  
of data that were used in ref. 18—V1 neuronal responses to natural videos from 
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two-way t-test, t = 14.53, d.f. = 2. b, Predictive accuracy of our models versus  
the amount of data used for training for four new recording sessions and mice. 

For each recording session, training data were partitioned in to 7 fractions 
ranging from 4 min to 76 min. Separate models (diamonds) were trained on the 
differing fractions of training data, and all were tested on the same held-out 
testing data. Models of the same mice are connected by lines. c, Predictive 
accuracy for each visual area from models that were trained on the full data.  
We did not find a statistically significant relationship between predictive 
accuracy and visual areas (linear mixed effects model37; NS, not significant  
by Wald test, P = 0.45, d.f. = 3).
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When tested on natural videos, foundation models outperformed 
individual models and required less training data from the new mice 
to achieve high levels of predictive accuracy (Fig. 3b). For instance, 
individual models required more than 60 min of training data to sur-
pass a median CCnorm of 0.65 for all mice, whereas foundation models 
required less than 30 min (Fig. 3b). This performance gain was observed 
across all tested stimulus domains, including those that were in new 
stimulus domains (Fig. 3c′–g′)—that is, out-of-distribution from the 
training domain of natural videos (Fig. 3b′). Notably, no stimuli from 
the out-of-distribution domains were used to train any component of 
the models, including the foundation core. Nevertheless, foundation 
models were more accurate at predicting responses to new stimulus 
domains and required substantially less training data from the new 
mice (Fig. 3c–g). For example, when predicting drifting Gabor filters, 
the foundation models were able to achieve a performance of median 
CCnorm greater than 0.55 using only 16 min of natural video training data. 
In contrast, the individual models required more than an hour of train-
ing data to reach the same performance level (Fig. 3d). This highlights 
the substantial difference in the data efficiency of these models—that 
is, the amount of training data (sample complexity) required from new 
subjects to accurately fit their neuronal responses. Thus, training a 
foundation dynamic core on natural video data pooled from multiple 
cortical layers, areas and mice produces a robust and transferable repre-
sentation of the visual cortex that generalizes to new mice and improves 
model performance for natural videos and for novel stimulus domains.

When combining functional studies of the brain with other modalities 
such as anatomy, there is typically a limited amount of time available 
for in vivo recordings before destructive histological analysis is per-
formed. Whereas traditionally this would limit the number of functional 

studies that can be performed in vivo, predictive models allow essen-
tially unlimited scans to be performed in silico, even after tissue has 
been destroyed. To enable this for the MICrONS project, responses 
to natural videos were collected for the purpose of model training. 
Owing to the challenge of completing all 14 scans in the same mouse 
in as short a period as possible, the amount of training data collected 
from each experiment (mean 42 min, range 33–53 min, depending on 
optical quality and mouse behavioural profile) was less than in the 
other recording sessions described in this Article. With the available 
amount of data, individual models—with all components trained on 
a single experiment—achieved a median CCnorm of 0.48–0.65 when 
tested on a held-out set of natural videos. By applying our foundation 
modelling paradigm—transferring the foundation core and fitting 
only the perspective, modulation and readout components on a single 
experiment—the median CCnorm increased to 0.58–0.76 (Extended Data 
Fig. 4). This highlights the advantage of the foundation modelling 
approach when there is a limited amount of data available for training.

Classical studies of parametric tuning
By leveraging the foundation core and transfer learning, we were able 
to create accurate foundation models for individual mice (Fig. 3). These 
models enable essentially unlimited in silico experiments for studying 
representations, testing theories and generating novel hypotheses 
that can be verified in vivo. Here we assessed the precision with which 
classical tuning properties of the visual cortex could be replicated at 
the individual neuronal level in our foundation model. We presented 
mice—not part of the foundation cohort—with natural video stimuli 
in order to train their ANN counterparts (Fig. 4a). Additionally, we 
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presented parametric stimuli (Fig. 4b′,c′) to measure the orientation, 
direction and spatial tuning of the recorded neurons. Subsequently, we 
presented the same parametric stimuli to the corresponding in silico 
neurons and measured their properties for comparison (Fig. 4b,c). 
This was done for 3 mice and approximately 30,000 neurons from 4 
visual areas (V1, LM, AL and RL).

To measure orientation and direction tuning, we presented direc-
tional pink noise (Fig. 4b′), which encoded coherent motion of different 
directions (0–360°) and orientations (0–180°). First, we computed the 
strength of orientation and direction tuning via selectivity indices for 
orientation (OSI) and direction (DSI). There was a high correspond-
ence between in vivo and in silico estimates for both OSI (Fig. 4d) and 
DSI (Fig. 4f), which validated the foundation model’s estimates of 
tuning strength for orientation and direction. Next, we estimated the 
preferred angles of orientation and direction of neurons by fitting a 
directional parametric model (mixture of von Mises distributions) 
to the responses. For strongly tuned neurons, the in vivo and in silico 
estimates of preferred angles of orientation and direction were closely 
matched (Fig. 4e,g). For example, for strongly orientation-tuned neu-
rons with an in silico OSI greater than 0.5 (11% of neurons), the median 
difference between the in vivo and in silico estimates of preferred ori-
entation was 4°, and with a lower OSI threshold of over 0.3 (43% of 
neurons), the median difference was 7° (Fig. 4e).

To measure spatial tuning, we presented flashing Gaussian dots 
(Fig. 4c′) to the neurons described above. We computed a spike- 
triggered average (STA) of the stimulus, which was used to estimate: 
(1) the strength of spatial tuning for Gaussian dots (non-uniformity 
of the STA) via the spatial selectivity index (SSI); and (2) the preferred 
location (peak of the STA) via least-squares fit ting of the STA to a spa-
tial parametric model (2D Gaussian distribution). Although using the 
Gaussian dot stimulus did not elicit strong SSI for the majority of neu-
rons, for those neurons that were strongly tuned in silico, we observed 
a close match between in vivo and in silico estimates of spatial tuning 
strength, measured by SSI (Fig. 4h). For instance, for strongly tuned 
neurons with in silico SSI greater than 8, the median distance between 
the in vivo and in silico estimates of the preferred location was 0.02 of 
the monitor width (Fig. 4i), approximately 2° in visual space.

Together, these results demonstrate the accuracy of estimating tun-
ing parameters for classical functional properties from our foundation 
model with no prior training on parametric stimuli. Therefore, rather 
than presenting parametric stimuli in vivo, parametric tuning can be 
performed in silico with an accurate and validated foundation model, 
freeing up valuable in vivo experimental time for other purposes.

Prediction of structural properties of neurons
The function of the neocortex emerges mechanistically from its cir-
cuit structure. The MICrONS project, a landmark dataset in neuro-
science, provides unprecedented scale and resolution, combining 
millimetre-scale functional recordings with anatomical structure at 
nanometre resolution, across multiple visual cortical areas of a single 
mouse. In the MICrONS mouse, the responses of more than 70,000 
excitatory neurons to natural videos were measured across 14 sequen-
tial scans, encompassing a 1 mm3 volume spanning V1, LM, AL and RL 
visual areas. This volume was subsequently subjected to serial electron 
microscopy and dense morphological reconstruction (Fig. 5b), result-
ing in detailed structures of approximately 60,000 excitatory neurons 
and 500 million synapses, representing the largest integrated study of 
neocortical structure and function to date2.

We used the foundation modelling paradigm to the MICrONS dataset 
to model the function of excitatory neurons within the 1 mm3 volume. 
The model’s readout module maps the output of the foundation core 
onto individual neuronal responses. The readout parameters of each 
neuron consist of two components: readout position and readout fea-
ture weights (Fig. 5a). We trained readout parameters for all excitatory 

neurons recorded in the MICrONS volume and we investigated whether 
these parameters would be useful for studying the structure–function 
relationship of the brain.
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We first examined the readout position, which consists of two param-
eters per neuron: azimuthal (x) and altitudinal (y) locations, specifying 
the centre of the receptive field learned by the model for each neuron. 
Analysis of the readout positions revealed that they accurately captured 
the retinotopic organization of the visual cortex (Fig. 5c). In V1, readout 
x positions aligned with the medial–lateral axis, and y positions aligned 
with the rostral–caudal axis. At the border of V1 and LM/RL, there was 
an inversion of the axis for the x readout position, demarcating the 
transition zone between these areas. This organization of readout posi-
tions according to anatomical locations aligns well with prior studies 
of retinotopic organization in the mouse visual cortex31,32.

Next, we investigated how the readout weights, a 512-dimensional 
vector per neuron, could be used to predict anatomical proper-
ties such as the visual area and morphologically defined cell types. 
These readout weights serve as a functional barcode, encoding the 
tuning of the neuron to visual features produced by the core mod-
ule at its readout position. We found that these functional barcodes 
captured differences between visual areas (V1, LM, AL and RL). Using 
logistic regression, the readout weights could predict visual areas 
with a balanced accuracy of 68%, exceeding the chance level of 25% 

(Fig. 5d). We further explored the possibility of predicting 11 mor-
phologically defined excitatory cell types from layers 2 to 5 of the 
neocortex (Fig. 5f), which were identified by Schneider-Mizell et al.33. 
Again, using logistic regression, we achieved a balanced accuracy of 
32% for cell-type prediction, outperforming the chance baseline of 
9% (Fig. 5e). Because these cell types are fairly well separated across 
cortical depth (Fig. 5f), it is possible that the classifier has learned to 
predict depth directly from the depth-varying signal-to-noise ratio 
of two-photon (2P) imaging. To control for this potential confound, 
we trained a classifier to predict cell types from 2P depth (reduced 
model) and compared to a second classifier provided with both 2P 
depth and readout feature weights (full model). We found that the full 
model significantly outperformed the reduced model in predicting 
cell types (likelihood ratio test, P < 10−9), indicating that the readout 
feature weights contribute to classifier performance. Collectively, 
these results demonstrate that our foundation model captures both 
functional and structural properties of neurons, making it a valuable 
tool for analysing structure–function relationships within the MICrONS 
volume and studying mechanisms of computation within the visual  
cortex.
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Discussion
In this Article, we introduce a foundation model of the mouse visual cor-
tex that achieves state-of-the-art performance at predicting dynamic 
neuronal responses across multiple visual areas, marking notable pro-
gress towards an accurate functional digital twin of the mouse visual 
system.

Beyond excelling in the natural video domain on which it was trained, 
our model accurately predicted responses to new stimulus domains 
such as noise patterns and static images. Its generalization performance 
on new stimulus domains highlights its ability to capture nonlinear 
transformations from image space to neuronal activity in the mouse 
visual cortex. The foundation core enabled accurate models of new 
mice to be fitted with limited training data, which outperformed models 
with cores that were individually trained for each mouse, underscoring 
the power of transfer learning to capture latent representations that 
explain neural activity across mice34.

Notably, we also demonstrate the utility of our model for making 
predictions beyond neural activity—for example, in tasks related to 
anatomy and connectivity—which greatly enhances its utility as a foun-
dation model of the brain1. Specifically, by transferring the foundation 
core, we built a digital twin of the MICrONS dataset, which enabled us 
to extract a functional barcode for each neuron—a vector embedding 
that describes the input–output function of visual response. Although 
the model was trained without anatomical information (that is, with-
out electron microscopy data), the functional barcodes successfully 
predicted anatomical cell types identified in an accompanying Article 
that analyses cellular morphology from the MICrONS electron micros-
copy dataset33.

The compact representation of neuronal function provided by the 
functional barcodes in our model was utilized in several other MICrONS 
studies examining the relationship between neuronal function and 
anatomy. In a study characterizing the morphological landscape of 
cortical excitatory neurons, the functional barcodes predict detailed 
features of dendritic morphology of layer 4 pyramidal neurons25. In 
another Article, the functional barcodes predict synaptic connectiv-
ity, beyond what could be explained by physical proximity of axons 
and dendrites24.

In summary, the results presented here and in the accompanying 
Articles24,25,35,36 that utilize our model demonstrate the power of the 
foundation modelling approach for neuroscience research. Its abil-
ity to uncover subtle patterns in neural organization, such as cellular 
morphology and synaptic connectivity, showcases the potential of the 
model for driving new insights in neuroscience. In large projects such 
as MICrONS, where dataset longevity is highly desirable, the strong 
generalization capabilities of our foundation model and its ability to 
perform tasks beyond the original training domain offer clear benefits. 
This extends the utility of the dataset beyond its initial scope, enabling 
researchers to explore questions that were not originally considered 
and facilitating discoveries in neural circuit organization.

Our work was inspired by recent breakthroughs in artificial intel-
ligence, where foundation models1 trained on massive data volumes 
have demonstrated remarkable generalization in many downstream 
tasks. Applied to neuroscience, the foundation modelling paradigm 
overcomes a major limitation of previous common approaches in which 
models are individually trained using data from a single experiment. 
The limited amount of data hinders the accuracy of models as they 
learn from scratch the complex nonlinearities of the brain, even though 
there is a great deal of similarity in how visual neurons respond. By 
contrast, foundation models combine data from multiple experiments, 
including data from many brain areas and subjects under high-entropy 
natural conditions, giving them access to a much larger and richer 
set of data; only the specific idiosyncrasies of each individual mouse 
and its neurons must be learned separately. In other words, the simi-
larities between neurons and subjects can be leveraged to identify 

common features of the brain, producing a more unified and accu-
rate model of the brain that is informed by multiple subjects rather  
than one.

Our present foundation model is just the beginning, as it only models 
parts of the mouse visual system under passive viewing conditions. By 
expanding this approach to encompass complex, natural behaviours 
in freely moving subjects, incorporating additional brain regions and 
cell types, the development of multimodal foundation neuroscience 
models offers a powerful new approach to deciphering the algorithms 
that underpin natural intelligence. As we accumulate more diverse 
multimodal data—encompassing sensory inputs, behaviours and neural 
activity across various scales, modalities and species, foundation neu-
roscience models will enable us to decipher the neural code of natural 
intelligence, providing unprecedented insights into the fundamental 
principles of the brain.
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Methods

Neurophysiological experiments
MICrONS data in Fig. 5 were collected as described in the accompa-
nying Article2, and data in Fig. 2a were collected as described18. Data 
collection for all other figures is described below.

All procedures were approved by the Institutional Animal Care and 
Use Committee of Baylor College of Medicine. Fourteen mice (Mus 
musculus, 6 females, 8 males, age 2.2–4 months) expressing GCaMP6s 
in excitatory neurons via Slc17a7-Cre and Ai162 transgenic lines (recom-
mended and shared by H. Zeng; JAX stock 023527 and 031562, respec-
tively) were anaesthetized and a 4-mm craniotomy was made over the 
visual cortex of the right hemisphere as described previously26,38. Mice 
were allowed at least five days to recover before experimental scans.

Mice were head-mounted above a cylindrical treadmill and 2P cal-
cium imaging was performed using Chameleon Ti-Sapphire laser 
(Coherent) tuned to 920 nm and a large field of view mesoscope39 
equipped with a custom objective (excitation NA 0.6, collection NA 
1.0, 21 mm focal length). Laser power after the objective was increased 
exponentially as a function of depth from the surface according to: 
P P= × e z L

0
( / )z , where P is the laser power used at target depth z, P0 is the 

power used at the surface (not exceeding 20 mW), and Lz is the depth 
constant (220 μm). The highest laser output of 100 mW was used at 
approximately 420 μm from the surface.

The craniotomy window was leveled with regards to the objective 
with six degrees of freedom. Pixel-wise responses from a region of 
interest spanning the cortical window (>2,400 × 2,400 μm, 2–5 μm per 
pixel, between 100 and 220 μm from surface, >2.47 Hz) to drifting bar 
stimuli were used to generate a sign map for delineating visual areas31. 
Area boundaries on the sign map were manually annotated.

For 11 out of 15 scans (including four of the foundation cohort scans), 
our target imaging site was a 1,200 × 1,100 μm2 area spanning L2–L5 at 
the conjunction of lateral V1 and 3 lateral higher visual areas: AL, LM 
and RL. This resulted in an imaging volume that was roughly 50% V1 
and 50% higher visual area. This target was chosen in order to mimic 
the area membership and functional property distribution in the 
MICrONS mouse2 Each scan was performed at 6.3 Hz, collecting eight 
620 × 1,100 μm2 fields per frame at 2.5 μm per pixel x–y resolution to tile 
a 1,200–1,220 × 1,100 μm2 field of view at 4 depths (2 planes per depth, 
20–40 μm overlap between coplanar fields). The four imaging planes 
were distributed across layers with at least 45 μm spacing, with 2 planes 
in L2/3 (depths: 170–200 μm and 215–250 μm), 1 in L4 (300–325 μm) 
and 1 in L5 (390–420 μm).

For the remaining four foundation cohort scans, our target imag-
ing site was a single plane in L2/3 (depths 210–220 μm), spanning all 
visual cortex visible in the cortical window (typically including V1, 
LM, AL, RL, PM and AM). Each scan was performed at 6.8–6.9 Hz, col-
lecting four 630 μm width adjacent fields (spanning 2,430 μm region 
of interest, with 90 μm total overlap). Each field was a custom height 
(2,010–3,000 μm) in order to encapsulate visual cortex within that 
field. Imaging was performed at 3 μm per pixel.

Video of the eye and face of the mouse was captured throughout 
the experiment. A hot mirror (Thorlabs FM02) positioned between 
the left eye and the stimulus monitor was used to reflect an IR image 
onto a camera (Genie Nano C1920M, Teledyne Dalsa) without obscur-
ing the visual stimulus. The position of the mirror and camera were 
manually calibrated per session and focused on the pupil. Field of view 
was manually cropped for each session. The field of view contained the 
left eye in its entirety, and was captured at ~20 Hz. Frame times were 
time stamped in the behavioural clock for alignment to the stimulus 
and scan frame times. Video was compressed using the Labview MJPEG 
codec with quality constant of 600 and stored the frames in AVI file.

Light diffusing from the laser during scanning through the pupil was 
used to capture pupil diameter and eye movements. A DeepLabCut 
model40 was trained on 17 manually labelled samples from 11 mice to 

label each frame of the compressed eye video (intraframe only H.264 
compression, CRF:17) with 8 eyelid points and 8 pupil points at cardinal 
and intercardinal positions. Pupil points with likelihood >0.9 (all 8 in 
72–99% of frames per scan) were fit with the smallest enclosing circle, 
and the radius and centre of this circle was extracted. Frames with <3 
pupil points with likelihood >0.9 (<1.2% frames per scan), or producing a 
circle fit with outlier >5.5× s.d. from the mean in any of the 3 parameters 
(centre x, centre y, radius, <0.2% frames per scan) were discarded (total 
<1.2% frames per scan). Gaps of ≤10 discarded frames were replaced by 
linear interpolation. Trials affected by remaining gaps were discarded 
(<18 trials per scan, <0.015%).

The mouse was head-restrained during imaging but could walk on 
a treadmill. Rostro-caudal treadmill movement was measured using a 
rotary optical encoder (Accu-Coder 15T-01SF-2000NV1ROC-F03-S1) 
with a resolution of 8,000 pulses per revolution, and was recorded at 
~100 Hz in order to extract locomotion velocity. The treadmill record-
ing was low-pass filtered with a Hamming window to remove high- 
frequency noise.

Monitor positioning and calibration
Visual stimuli were presented with Psychtoolbox in MATLAB to the left 
eye with a 31.0 × 55.2 cm (height × width) monitor (ASUS PB258Q) with 
a resolution of 1,080 × 1,920 pixels positioned 15 cm away from the eye. 
When the monitor is centred on and perpendicular to the surface of the 
eye at the closest point, this corresponds to a visual angle of 3.8° cm−1 
at the nearest point and 0.7° cm−1 at the most remote corner of the 
monitor. As the craniotomy coverslip placement during surgery and 
the resulting mouse positioning relative to the objective is optimized 
for imaging quality and stability, uncontrolled variance in skull posi-
tion relative to the washer used for head-mounting was compensated 
with tailored monitor positioning on a six-dimensional monitor arm. 
The pitch of the monitor was kept in the vertical position for all mice, 
while the roll was visually matched to the roll of the head beneath the 
headbar by the experimenter. In order to optimize the translational 
monitor position for centred visual cortex stimulation with respect 
to the imaging field of view, we used a dot stimulus with a bright back-
ground (maximum pixel intensity) and a single dark square dot (mini-
mum pixel intensity). Randomly ordered dot locations drawn from 
either a 5 × 8 grid tiling the screen (20 repeats) or a 10 × 10 grid tiling a 
central square (approximately 90° width and height, 10 repeats), with 
each dot presentation lasting 200 ms. For five scans (four foundation 
cohort scans, one scan from Fig. 4), this dot-mapping scan targeted 
the V1–RL–AL–LM conjunction, and the final monitor position for each 
mouse was chosen in order to maximize inclusion of the population 
receptive field peak response in cortical locations spanning the scan 
field of view. In the remaining scans, the procedure was the same, but 
the scan field of view spanned all of V1 and some adjacent higher visual 
areas, and thus the final monitor position for each mouse was chosen 
in order to maximize inclusion of the population receptive field peak 
response in cortical locations corresponding to the extremes of the 
retinotopic map. In both cases, the yaw of the monitor visually matched 
to be perpendicular to and 15 cm from the nearest surface of the eye 
at that position.

A photodiode (TAOS TSL253) was sealed to the top left corner of the 
monitor, and the voltage was recorded at 10 kHz and time stamped with 
a 10 MHz behaviour clock. Simultaneous measurement with a lumi-
nance meter (LS-100 Konica Minolta) perpendicular to and targeting 
the centre of the monitor was used to generate a lookup table for linear 
interpolation between photodiode voltage and monitor luminance in 
cd m−2 for 16 equidistant values from 0–255, and 1 baseline value with 
the monitor unpowered.

At the beginning of each experimental session, we collected photo
diode voltage for 52 full-screen pixel values from 0 to 255 for 1-s tri-
als. The mean photodiode voltage for each trial was collected with an 
800-ms boxcar window with 200-ms offset. The voltage was converted 



to luminance using previously measured relationship between photodi-
ode voltage and luminance and the resulting luminance versus voltage 
curve was fit with the function L = B + A × Pγ where L is the measured 
luminance for pixel value P, and the median γ of the monitor was fit as 
1.73 (range 1.58–1.74). All stimuli were shown without linearizing the 
monitor (that is, with monitor in normal gamma mode).

During the stimulus presentation, display frame sequence informa-
tion was encoded in a three-level signal, derived from the photodiode, 
according to the binary encoding of the display frame (flip) number 
assigned in order. This signal underwent a sine convolution, allowing 
for local peak detection to recover the binary signal together with its 
behavioural time stamps. The encoded binary signal was reconstructed 
for >96% of the flips. Each flip was time stamped by a stimulus clock 
(MasterClock PCIe-OSC-HSO-2 card). A linear fit was applied to the flip 
time stamps in the behavioural and stimulus clocks, and the parameters 
of that fit were used to align stimulus display frames with scanner and 
camera frames. The mean photodiode voltage of the sequence encod-
ing signal at pixel values 0 and 255 was used to estimate the luminance 
range of the monitor during the stimulus, with minimum values of 
approximately 0.005–1 cd m−2 and maximum values of approximately 
8.0–11.5 cd m−2.

Scan and behavioural data preprocessing
Scan images were processed with the CAIMAN pipeline41, as described2, 
to produce the spiking activity neurons at the scan rate of 6.3–6.9 Hz. 
The neuronal and behavioural (pupil and treadmill) activity were res
ampled via linear interpolation to 29.967 Hz, to match the presentation 
times of the stimulus video frames.

Stimulus composition
We used dynamic libraries of natural videos42 and directional pink noise 
(Monet) as described2, and the static natural image library as described 
in Walker et al.16.

Dynamic Gabor filters were generated as described43. We used a 
spatial envelope that had a s.d. of approximately 16.4° in the centre of 
the monitor. A 10-s trial consisted of 10 Gabor filters (each lasting 1 s) 
with randomly sampled spatial positions, directions of motion, phases, 
spatial and temporal frequencies.

Random dot kinematograms were generated as described44. The 
radius of the dots was approximately 2.6° in the centre of the monitor. 
Each 10-s trial contained 5 patterns of optical flow, each lasting 2 s. 
The patterns were randomly sampled in terms of type of optical flow 
(translation: up/down/right/left; radial: in/out; rotation: clockwise/
anticlockwise) and coherence of random dots (50%, 100%).

The stimulus compositions of the MICrONS recording sessions is 
described in the accompanying Article2. For all other recording ses-
sion, the stimulus compositions are listed in Extended Data Table 1.

Neural network architecture
Our model of the visual cortex is an ANN composed of four modules: 
perspective, behaviour, core and readout. These modules are described 
in the following sections.

Perspective module
The perspective module uses ray tracing to infer the perspective or 
retinal activation of a mouse at discrete time points from two input 
variables: stimulus (video frame) and eye position (estimated centre of 
pupil, extracted from the eye tracking camera). To perform ray tracing, 
we modelled the following physical entities: (1) topography and light 
ray trajectories of the retina; (2) rotation of the retina; (3) position of 
the monitor relative to the retina; and (4) intersection of the light rays 
of the retina and the monitor.

(1) We modelled the retina as a uniform 2D grid mapped onto a 
3D sphere via an azimuthal equidistant projection (Extended Data 
Fig. 1a). Let θ and ϕ denote the polar coordinates (radial and angular, 

respectively) of the 2D grid. The following mapping produces a 3D light 
ray for point (θ, ϕ) of the modelled retina:
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(2) We used pupil tracking data to infer the rotation of the occular 
globe and the retina. At each time point t, a multilayer perceptron (MLP; 
with 3 layers and 8 hidden units per layer) is used to map the pupil posi-
tion onto the 3 ocular angles of rotation:
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where the pxt and pyt are the x and y coordinates of the pupil centre in 
the frame of the tracking camera at time t, and ̂ ̂θ θ,xt yt  and ̂θzt are the 
estimated angles of rotation of about the x (adduction–abduction), y 
(elevation–depression) and z (intorsion–extorsion) axes of the occular 
globe at time t.

Let RR R R, , ∈x y z
3×3 denote rotation matrices about x, y and z axes. 

Each light ray of the retina l(θ, ϕ) is rotated by the occular angles of 
rotation:

̂ ̂ ̂ ̂θ ϕ t θ θ θ θ ϕ( , , ) = ( ) ( ) ( ) ( , ),z zt y yt x xtl R R R l

producing ̂ θ ϕ t( , , ) ∈ 3Rl , the ray of light for point (θ, ϕ) of the retina at 
time t, which accounts for the gaze of the mouse and the rotation of 
the occular globe.

(3) We modelled the monitor as a plane with six degrees of freedom: 
three for translation and three for rotation. Translation of the monitor 
plane relative to the retina is parameterized by R∈0

3m . Rotation is 
parameterized by angles θ θ θ, ,x y z:

θ θ θ[ ] = ( ) ( ) ( ),x y z z z y y x x
m m m R R R

where m m m R, , ∈x y z
3  are the horizontal, vertical, and normal unit 

vectors of the monitor.
(4) We computed the line-plane intersection between the monitor 

plane and ̂ θ ϕ t( , , )l , the gaze-corrected trajectory of light for point ij 
of the retina at time t:
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where m(θ, ϕ, t) is the point of intersection between the monitor plane 
and the light ray ̂ θ ϕ t( , , )l . This is projected onto the monitor’s hori-
zontal and vertical unit vectors:
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yielding mx(θ, ϕ, t) and my(θ, ϕ, t), the horizontal and vertical displace-
ments from the centre of the monitor/stimulus (Extended Data Fig. 1b). 
To produce inferred activation of the retinal grid at (θ, ϕ, t), we per-
formed bilinear interpolation of the stimulus at the four pixels sur-
rounding the line-plane intersection at mx(θ, ϕ, t), my(θ, ϕ, t).

Modulation module
The modulation module is a small long short-term memory (LSTM) 
network45 that transforms behavioural variables—that is, locomotion 
and pupil size—and previous states of the network, to produce dynamic 
representations of the behavioural state and arousal of the mouse.
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where r is the running or treadmill speed, p is the pupil diameter, p′ is 
the instantaneous change in pupil diameter, and h c, ∈m m 8R  are the 
‘hidden’ and ‘cell’ state vectors of the modulation LSTM network.

The hidden state vector hm is tiled across space to produce modula-
tion feature maps t

mH :

∈ → ∈ ,t
m C

t
m C H W× ×h HR R

where C, H and W denote channel, height and width, respectively, of 
the feature maps. These feature maps Ht

m serve as the modulatory 
inputs into the recurrent portion of the core module at time t.

Core module
The core module—comprised of feedforward and recurrent compo-
nents—transforms the inputs from the perspective and modulation 
modules to produce feature representations of vision modulated by 
behaviour.

First, the feedforward module transforms the visual input provided 
by the perspective module. For this we used DenseNet architecture46 
with three blocks. Each block contains two layers of 3D (spatiotem-
poral) convolutions followed by a Gaussian error linear unit (GELU) 
nonlinearity47 and dense connections between layers. After each 
block, spatial pooling was performed to reduce the height and width 
dimensions of the feature maps. To enforce causality, we shifted the 
3D convolutions along the temporal dimension, such that no inputs 
from future time points contributed to the output of the feedforward  
module.

Next, the recurrent module transforms the visual and behavioural 
information provided by the feedforward and modulation modules, 
respectively, through a group of recurrent cells. We used a convolu-
tional LSTM (Conv-LSTM)48 as the architecture for each recurrent cell. 
For each cell c, the formulation of the Conv-LSTM is shown below:
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where σ denotes the sigmoid function, ⊙ denotes the Hadarmard prod-
uct, and W *k  denotes a 2D spatial convolution with a k × k kernel. t

fH , 
Ht

m are the feedforward and modulation outputs, respectively, at time 
t, and t

c
−1
′H  is the hidden state of an external cell c′ at time t − 1. For cell 

c at time t, t
cX , Ct

c and Ht
c are the input, cell and hidden states, respec-

tively, and t
cI , Ot

c, t
cF  and Gt

c are the input, output, forget and cell gates.
To produce the output of the core network, the hidden feature maps 

of the recurrent cells are concatenated along the channel dimension:

= Concatenate( , , . . .).t t
c

t
c=1 =2H H H

Given the recent popularity and success of transformer networks49, 
we explored whether adding the attention mechanism to our network 
would improve performance. We modified the Conv-LSTM architecture 
to incorporate the attention mechanism from the convolutional vision 
transformer (CvT)50. This recurrent transformer architecture, which 
we name CvT-LSTM, is described as follows:
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where attention is performed over query t
cQ , key Kt

c and value t
cV  spatial 

tokens, which are produced by convolutions of the feature map t
cZ . The 

technique of using convolutions with the attention mechanism was 
introduced with CvT50, and here we extend it by incorporating it into 
a recurrent LSTM architecture (CvT-LSTM).

We compare the performance of Conv-LSTM versus CvT-LSTM 
recurrent architecture in Extended Data Fig. 5. When trained on the 
full amount of data, Conv-LSTM performs very similarly to CvT-LSTM. 
However, Conv-LSTM outperforms CvT-LSTM when trained on 
restricted data (for example, 4 min of natural videos). This was con-
sistent for all stimulus domains that were used to test model accu-
racy—natural videos (Extended Data Fig. 5a), natural images (Extended 
Data Fig. 5b), drifting Gabor filters (Extended Data Fig. 5c), flash-
ing Gaussian dots (Extended Data Fig. 5d), directional pink noise 
(Extended Data Fig. 5e) and random dot kinematograms (Extended 
Data Fig. 5e). The performance difference under data constraints 
may be due a better inductive bias of the Conv-LSTM. Alternatively, it 
could be due to a lack of optimization of the CvT-LSTM hyperparam-
eters, and a more extensive hyperparameter search may yield better  
performance.

Readout module
The readout module maps the core’s outputs onto the activity of indi-
vidual neurons. For each neuron, the readout parameters are factorized 
into two components: spatial position and feature weights. For a neu-
ron n, let R∈n 2p  denote the spatial position (x, y), and let Rw ∈n C denote 
the feature weights for that neuron, with C = 512 being the number 
channels in the core module’s output. To produce the response of that 
neuron n at time t, the following readout operation is performed:

h H p

h wr b
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where ∈t
n Ch R  is a feature vector that is produced via bilinear interpo-

lation of the core network’s output RH ∈t
C H W× ×  (channels, height, 

width), interpolated at the spatial position pn. The feature vector t
nh  is 

then combined with the feature weights wn and a scalar bias bn to pro-
duce the response rt

n of neuron n at time t.
Due to the bilinear interpolation at a single position, each neuron 

only reads out from the core’s output feature maps within a 2 × 2 spatial 
window. While this adheres to the functional property of spatial selec-
tivity exhibited by neurons in the visual cortex, the narrow window 
limits exploration of the full spatial extent of features during model 
training. To facilitate the spatial exploration of the core’s feature maps 
during training, for each neuron n, we sampled the readout position 
from a 2D Gaussian distribution: ~ ( , )n n nNp µ Σ . The parameters of the 
distribution μn, Σn (mean, covariance) were learned via the reparam-
eterization trick51. We observed empirically that the covariance Σn 
naturally decreased to small values by the end of training, meaning 



that the readout converged on a specific spatial position. After training, 
and for all testing purposes, we used the mean of the learned distribu-
tion μn as the single readout position pn for neuron n.

In Extended Data Fig. 6, we examine the stability of the learned read-
out feature weights across different recording sessions. Due to the 
overlap between imaging planes, some neurons were recorded multiple 
times within the MICrONS volume. We found that the readout feature 
weights of the same neuron were more similar than feature weights 
of different neurons that were close in proximity, indicating that the 
readout feature weights of our model offer an identifying barcode of 
neuronal function that is stable across experiments.

Model training
The perspective, behaviour, core, and readout modules were assembled 
together to form a model that was trained to match the recorded 
dynamic neuronal responses from the training dataset. Let yt

i be the 
recorded in vivo response, and let rt

i be the predicted in silico response 
of neuron i at time t. The ANN was trained to minimize the Poisson 
negative-log likelihood loss, ∑ r y r− log( )it t

i
t
i

t
i , via stochastic gradient 

descent with Nesterov momentum52. The ANN was trained for 200 
epochs with a learning rate schedule that consisted of a linear warm 
up in the first 10 epochs, cosine decay53 for 90 epochs, followed by a 
warm restart and cosine decay for the remaining 100 epochs. Each 
epoch consisted of 512 training iterations/gradient descent steps. We 
used a batch size of 5, and each sample of the batch consisted of 70 
frames (2.33 s) of stimulus, neuronal and behavioural data.

Model hyperparameters
We used a grid search to identify architecture and training hyperparam-
eters. Model performances for different hyperparameters were evalu-
ated using a preliminary set of mice. After optimal hyperparameters 
were identified, we used the same hyperparameters to train models 
on a separate set of mice, from which the figures and results were pro-
duced. There was no overlap in the mice and experiments used for 
hyperparameter search and the mice and experiments used for the final 
models, results, and figures. This was done to prevent overfitting and 
to ensure that model performance did not depend on hyperparameters 
that were fit specifically for certain mice.

Model testing
We generated model predictions of responses to stimuli that were 
included in the experimental recordings but excluded from model 
training. To evaluate the accuracy of model predictions, for each neu-
ron we computed the correlation between the mean in silico and in vivo 
responses, averaged over stimulus repeats. The average in vivo response 
aims to estimate the true expected response of the neuron. However, 
when the in vivo response is highly variable and there are a limited 
number of repeats, this estimate becomes noisy. To account for this, 
we normalized the correlation by an upper bound proposed by Schoppe 
et al.27. Using ⋅  to denote average over trials or stimulus repeats, the 
normalized correlation CCnorm is defined as follows:
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N y
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where r is the in silico response, y is the in vivo response, and N is the 
number of trials. CCabs is the Pearson correlation coefficient between 
the average in silico and in vivo responses. CCmax is the upper bound of 
achievable performance given the the in vivo variability of the neuron 
and the number of trials.

Parametric tuning
To estimate parametric tuning, we presented parametric stimuli to 
the mice and the models. Specifically, we used directional pink noise 
parameterized by direction/orientation and flashing Gaussian blobs 
parameterized by spatial location. Orientation, direction and spatial 
tuning were computed from the recorded responses from the mice and 
the predicted responses from the models. This resulted in analogous 
in vivo and in silico estimates of parametric tuning for each neuron. 
The methods for measuring the tuning to orientation, direction, and 
spatial location are explained in the following sections.

Orientation and direction tuning
We presented 16 angles of directional pink noise, uniformly distributed 
between [0, 2π). Let rθ be the mean response of a neuron to the angle 
θ, averaged over repeated presentations of the angle. The OSI and DSI 
were computed as
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that is, the normalized magnitude of the first and second Fourier com-
ponents.

To determine the parameters for orientation and direction tuning, 
we used the following parametric model:

f θ μ κ α β γ αe βe γ( , , , , ) = + + ,κ θ μ κ θ μ πcos( − ) cos( − + )

which is a mixture of two von Mises functions with amplitudes α and 
β, preferred directions μ and μ + π, and dispersion κ, plus a baseline 
offset of γ. The preferred orientation is the angle that is orthogonal to 
μ between [0, π], that is, μ( + π/2) mod π. To estimate the parameters 
μ, κα, β, γ that best fit the neuronal response, we performed least-
squares optimization, minimizing ∑ f θ μ κα β γ r( ( , , , ) − )θ θ

2.
Parameters were estimated via least square optimization for both 

the in vivo and in silico responses. Let ̂μ and μ  be the angles of preferred 
directions estimated from in vivo and in silico responses, respectively. 
The angular distances between the in vivo and in silico estimates of 
preferred direction (Fig. 4g) and orientation (Fig. 4e) were computed 
as follows:

̂
̂

μ μ

μ μ

ΔDirection = arccos(cos( − )) ,

ΔOrientation = arccos(cos(2 − 2 ))/2 .

Spatial tuning
To measure spatial tuning, we presented ‘on’ and ‘off’ (white and black), 
flashing (300 ms) Gaussian dots. The dots were isotropically shaped, 
with a s.d. of approximately 8 visual degrees in the centre of the monitor. 
The position of each dot was randomly sampled from a 17 × 29 grid tiling 
the height and width monitor. We observed a stronger neuronal response 
for ‘off’ compared to ‘on’, and therefore we used only the ‘off’ Gaussian 
dots to perform spatial tuning from the in vivo and in silico responses.

To measure spatial tuning, we first computed the STA of the stimulus. 
Let x ∈ 2R  denote the spatial location (height and width) in pixels. The 
value of the STA at location x was computed as follows:

∣ ∣∑
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where rt is the response of the neuron, sxt is the value of the stimulus at 
location x and time t, and s0 is the blank or grey value of the monitor.
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To measure the spatial selectivity of a neuron, we computed the 

covariance matrix or dispersion of the STA. Again using x ∈ 2R  denote 
the spatial location (height and width) in pixels:
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The SSI, or strength of spatial tuning, was defined as the negative-log 
determinant of the covariance matrix:

SSI = − log Σ .STA

To determine the parameters of spatial tuning, we used least squares 
to fit the STA to the following parametric model:

f α γ α γ( , Σ, , ) = exp −
1
2

( − ) Σ ( − ) + ,T −1μ μ μx x x







which is a 2D Gaussian component with amplitude α, mean μ, and covari-
ance Σ, plus a baseline offset of γ.

From the in vivo and in silico responses, we estimated two sets of 
spatial tuning parameters. Let μ̂ and μ  be the means (preferred spatial 
locations) estimated from in vivo and in silico responses, respectively. 
To measure the difference between the preferred locations (Fig. 4i), 
we computed the Euclidean distance:

μ μΔLocation = − .̂

Anatomical predictions from functional weights
To predict brain areas from readout feature weights, we used all func-
tional units in the MICrONS data from 13 scans that had readout feature 
weights in the model. We trained a classifier to predict brain areas from 
feature weights using logistic regression with nested cross validation. 
For each of the 10 folds, 90% of the data was used to train the model 
with another round of 10 fold cross validation to select the best L2 regu-
larization weight. The best-performing model was used to test on the 
held-out 10% of data. Finally, all of the predictions were concatenated 
and used to test the performance of the classifier (balanced accuracy) 
and generate the confusion matrix. The confusion matrix was normal-
ized such that all rows sum to 1, thus the diagonal values represent the 
recall of each class.

To predict cell types, the same functional data source was used as in 
the brain area predictions. Cell types were obtained from CAVEclient 
initialized with ‘minnie65_public’ and table ‘aibs_metamodel_mtypes_
v661_v2’. To associate a neuron’s functional data with its cell type, we 
merged the cell types to a match table made by combining the manual 
and fiducial-based automatic coregistration described in MICrONS 
Consortium et al.2. Finally, because each neuron could be scanned 
more than once, and thus could have more than one functional read-
out weight, we subset the data such that each neuron only had one 
readout weight according to its highest cc_max. Following this proce-
dure, n = 16,561 unique electron microscopy neurons remained. Out of 
the 20 cell classes, all excitatory neuron classes in L2–5 were chosen 
(except L5NP, which had comparably fewer coregistered cells), leaving 
11 classes: L2a, L2b, L2c, L3a, L3b, L4a, L4b, L4c, L5a, L5b and L5ET. To 
train the classifier using readout weights to predict cell types, logistic 
regression was used with the same nested cross validation procedure 
and performance metric as described in the brain area predictions.

For testing whether readout weights contributed to cell-type pre-
dictions beyond imaging depth, the 2P depth of each functional unit 

was obtained from a 2P structural stack (stack session 9, stack idx 19) 
wherein all imaging planes were registered2. This provided a common 
reference frame for all functional units. The two logistic regression 
models (depth versus depth + readout weights) were trained with all 
of the data, and the predicted probabilities and coefficients from the 
models were used to run the likelihood ratio test, where a P value less 
than 0.05 was chosen as the threshold for statistical significance.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All MICrONS data are available at https://bossdb.org/project/microns- 
minnie. Further details are available at https://www.microns-explorer.
org/cortical-mm3.

Code availability
The source code and foundation model weights are available at https://
github.com/cajal/fnn. The model training and analysis pipeline can be 
accessed at https://github.com/cajal/foundation. The experimental 
recording and calcium imaging pipeline can be accessed at https://
github.com/cajal/pipeline.
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Extended Data Fig. 1 | ANN perspective. Schematic of the modeled 
perspective the animal. a, The retina is modeled as points on a sphere receiving 
light rays that trace through the origin. An example light ray with polar angle θ 
and azimuthal angle ϕ is shown in red. b, The light ray is traced to a point mx,  
my on the monitor. Bilinear interpolation of the four pixels on the monitor 

surrounding mx, my produces the activation of a point θ, ϕ on the modeled 
retina. c, 9 examples of the modeled perspective from the left eye of an animal, 
with 3 horizontal rotations of the optical globe (abduction/adduction) × 3 
vertical rotations (elevation/depression). The concentric circles indicate visual 
angles in degrees. (See Methods for details on the perspective network).



Extended Data Fig. 2 | ANN modulation. Visualization of the modulation 
network’s output, projected onto 2 dimensions via UMAP. a, b show the same 
data from an example recording session and modulation network. Each point 
on the plot indicates a point in time from the recording session. The colors 

indicate measurements of pupil size (a) and treadmill speed (b) at the 
respective points in time. (See Methods for details on the modulation 
network).
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Extended Data Fig. 3 | Neural network lesion studies. To determine the  
effect that various components of the model have on predictive accuracy, we 
performed lesion studies, where we altered individual components of model 
and evaluated the effect that the alteration had on model performance (CCabs). 
The left 4 columns (a-d, f-i, k-n, p-s) are scatterplots of reference vs lesioned 
model performance, with each column corresponding to different mouse  
and each point corresponding to a neuron. The right-most column (e, j, o, t) 
displays density histograms of the performance difference between the 

reference and the lesioned models, plotted separately for each mouse, as well 
as the t-statistic and p-values of paired two-sided t-tests. The first row (a-e) 
shows the effect of the perspective module on model performance, the second 
row (f-j) shows the effect of the modulation module, the third row (k-o) shows 
the effect of the convolution type – 2D vs 3D – of the feedforward module, and 
the fourth row (p-t) shows the effect of the loss function – Poisson negative log 
likelihood (Poission NLL) vs mean square error (MSE).



Extended Data Fig. 4 | ANN performance: Individual vs. Foundation. 
Predictive accuracy (median CCnorm across neurons) of foundation models  
(with the foundation core) vs. individual models (with cores trained on 
individual recording sessions). For the 4 mice in the 4 left columns, 1 recording 
session was performed, and that data was partitioned into 7 training/validation 
splits, which were used to train separate individual/foundation models.  

The predictive accuracy of those models (diamonds) is reported for 6 testing 
stimulus domains (rows). For the MICrONS mouse, 14 recording sessions were 
performed, for each recording session, a model was trained using nearly all 
(99%) of the data available for training/validation. The MICrONS models were 
only tested on the natural movies, due to the lack of the other stimuli in the 
recording sessions. All models were trained only using natural movies.
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Extended Data Fig. 5 | Recurrent architecture: Conv-Lstm vs. CvT-Lstm.  
We evaluated the performance of two different types of recurrent architectures 
for the core module: Conv-Lstm (blue) and CvT-Lstm (tan). For each architecture, 
a core was trained on 8 mice and then transferred to 4 new mice. For each of the 
new mice, 7 models were trained using varying amounts of natural movies, 
ranging from 4 to 76 minutes. The predictive accuracy (CCnorm) of these models 

was evaluated on 6 different stimulus domains: natural movies (a), natural 
images (b), drifting gabor filter (c), flashing Gaussian dots (d), directional pink 
noise (e), random dot kinematograms (f). Blue diamonds indicate models with 
the Conv-Lstm core, and tan diamonds indicate models with the CvT-Lstm core. 
For each architecture, models of the same mouse are connected by lines.



Extended Data Fig. 6 | Pairwise similarities of readout feature weights of 
neurons from the MICrONS volume. Here we examine the similarities of 
readout weights of same or different neurons, from same or different scans 
(recording sessions). In panels a–c, the similarities of readout weights are 
plotted for the following groups: same neuron from different scan (y-axis of a), 
same neuron from same scan (y-axis of b), different neuron from different scan 
(x-axis of a, x-axis of c), different neuron from same scan (x-axis of b and y-axis  
of c). The similarity between readout weights was measured inversely via 
angular distance πxx yy xx yy∠ := arccos(( ⋅ )/( ))/ , where x, y is a pair of readout 
weights. A similar pair of readout weights will exhibit a small ∠, and vice versa. 
The scatterplots a–c are colored by the CC max, which is an inverse measure of 

neuronal noise, i.e., the estimated maximum correlation coefficient that a 
model could achieve at predicting the mean response the neuron (see Methods 
for details). For each neuron N, the ‘different’ neuron N’ was restricted to be  
≤100 μm apart from each other in terms of soma distance, and the distribution 
of the number of ‘different’ neurons is shown in d (from different scans) and  
e (from the same scan). f and g (corresponding to d and e, respectively) show the 
fraction of the nearby neurons N’ that are more similar to N in terms of readout 
weights than N is to itself across different scans. f, For 919 out of the 1013 
neurons N, less than 0.05 of nearby neurons N’ from different scans had more 
similar readout weights. g, For 840 out of the 1013 neurons N, less than 0.05 of 
nearby neurons N’ from the same scan had more similar readout weights.
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Extended Data Table 1 | Table listing the experimental recordings, collected for either foundation core training (Foundation 
Cohort = Yes) or validation (Foundation Cohort = No)

The animal ID, number of neurons, and areas of the visual cortex are listed for each experiment. The ‘Training Data’ and ‘Testing Data’ columns list the Minutes x Repeats of each type of stimulus, 
designated for either model training or testing.
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For image acquisition, we used ScanImage 2017b. Stimuli were presented using PsychToolBox 3. The data collection process was automated 
with Labview.

Data analysis We used DeepLabCut (2.0.5) for automatic tracking of the pupil. We used CaImAn (1.0) for automatic segmentation and deconvolution of 
calcium imaging data. Our custom built analysis pipeline (https://github.com/cajal/pipeline, https://github.com/cajal/foundation) also used 
general tools like Numpy (1.23.5), pandas (1.5.3), SciPy (1.10.1), statsmodels (0.13.5), scikit-learn (1.2.1),  PyTorch (1.12.1), Matplotlib (3.7.0), 
seaborn (0.12.2), HoloViews (1.15.4), Ipyvolume (0.5.2), Jupyter (ipykernel: 6.21.2), MySQL (5.7.37), Docker (23.0.1), and Kubernetes 
(1.22.11). DataJoint (0.12.9) were used for storing and managing data.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The MICrONS functional and structural data are available on BossDB (https://bossdb.org/project/microns-minnie, please also see https://www.microns-
explorer.org/cortical-mm3 for details). The MICrONS foundation model is available on GitHub (https://github.com/cajal/fnn).
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study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.  
Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has 
been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this 
information has not been collected.  
Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or 
other socially relevant 
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Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why 
they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables 
(for example, race or ethnicity should not be used as a proxy for socioeconomic status).  
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the 
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or 
administrative data, social media data, etc.) 
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed a priori. Sample sizes (number of connections tested) match or exceed previous studies of similar 
design.

Data exclusions Of the 14 released MICrONS scans, one scan was excluded a priori from the study due to experimental issues (responses to some stimuli were 
not collected due to water running out from the objective). Duplicate detection was performed to identify neurons that were recorded more 
than once in experiments. Besides that, no neurons were exlcuded from model training or analysis.

Replication The approach of using a foundation model core to fit new models of mice was replicated across 4 mice for evaluating predictive accuracy 
(Figure 3) and 3 mice for evaluating parametric tuning accuracy (Figure 4).

Randomization No randomization of animal subjects was performed as our experimental design did not stratify into animal groups.

Blinding No blinding is performed during data collection since our study did not include predefined experimental groups for sample allocation. The 
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Blinding analysis is performed unblinded; however, the same computational methods were applied to all control and sample groups.

Reporting for specific materials, systems and methods
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study
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Animals and other organisms
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Dual use research of concern

Plants

Methods
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ChIP-seq
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MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For experiments excluding the MICrONS dataset in this manuscript: Three mice, Mus musculus, 78-86 days old at first experimental 
scan. Heterozygous for both Slc17a7-Cre (B6;129S-Slc17a7tm1.1(cre)Hze/J, Jackson Laboratory Strain # 023527) and Ai162 (B6.Cg-
Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze/J, Jackson Laboratory Strain # 031562). The MICrONS dataset was collected from a mouse 
of the same species and strain, 75 days old.

Wild animals Study did not involve wild animals.

Reporting on sex For new experiments in this manuscript: 6 Female, 8 Males. For MICrONS dataset, 1 Male. Animals were randomly recruited to the 
study with respect to sex. Analysis disaggregated for sex was not performed, due to low sample size and expected generalization of 
principles under study across genders.

Field-collected samples Study did not involve samples collected from the field.

Ethics oversight All procedures were approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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