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feature extraction for connectomics
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We are in the era of millimetre-scale electron microscopy volumes collected at 
nanometre resolution1,2. Dense reconstruction of cellular compartments in these 
electron microscopy volumes has been enabled by recent advances in machine 
learning3–6. Automated segmentation methods produce exceptionally accurate 
reconstructions of cells, but post hoc proofreading is still required to generate large 
connectomes that are free of merge and split errors. The elaborate 3D meshes of 
neurons in these volumes contain detailed morphological information at multiple 
scales, from the diameter, shape and branching patterns of axons and dendrites, 
down to the fine-scale structure of dendritic spines. However, extracting these 
features can require substantial effort to piece together existing tools into custom 
workflows. Here, building on existing open source software for mesh manipulation, 
we present Neural Decomposition (NEURD), a software package that decomposes 
meshed neurons into compact and extensively annotated graph representations. 
With these feature-rich graphs, we automate a variety of tasks such as state-of-the-art 
automated proofreading of merge errors, cell classification, spine detection,  
axonal-dendritic proximities and other annotations. These features enable many 
downstream analyses of neural morphology and connectivity, making these massive 
and complex datasets more accessible to neuroscience researchers.

To understand the morphological features of individual neurons and 
the principles governing their connectivity, the use of large-scale elec-
tron microscopy and reconstruction of entire neural circuits is becom-
ing increasingly routine. For example, the Machine Intelligence from 
Cortical Networks (MICrONS) Consortium published a millimetre-scale 
open source dataset of mouse visual cortex2 (the MICrONS dataset, 
comprising approximately 80,000 neurons and 500 million synapses) 

and a team at Harvard published a similar reconstructed volume of 
human temporal lobe1 (the H01 dataset, comprising approximately 
15,000 neurons and 130 million synapses). These reconstructions offer 
opportunities for analysis of neural morphology and synaptic connec-
tivity at a scale that was previously inaccessible. However, effective use 
of these massive and complex datasets for scientific discovery requires 
a new ecosystem of software tools.
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Here, we describe NEURD, a Python software package that extracts 
useful information from the 3D mesh and synapse locations for each 
neuron, and implements workflows for automated proofreading of 
merge errors, morphological analysis and connectomic studies. NEURD 
decomposes the 3D meshes of neurons from electron microscopy 
reconstructions into a richly annotated graph representation with 
many pre-computed features. These graphs characterize the neuron 
at the level of non-branching segments in the axonal and dendritic 
arbor and can support powerful queries spanning spatial scales from 
the geometry of the neuropil to the morphology of boutons and spines.

We begin by demonstrating the utility of this framework in an auto-
mated proofreading pipeline that is highly effective at correcting merge 
errors using heuristic rules. Hereafter, the term proofreading in refer-
ence to our pipeline will refer to merge error correction and not include 
the task of extending false splits. We focus on merge errors because 
of their catastrophic effects on connectivity analyses. We next show 
how the pre-computed features extracted by NEURD can enable us 
to recapitulate and extend a variety of previous observations about 
neural morphology and geometry, taking advantage of the diverse 
feature set computed on thousands of reconstructed neurons spanning 
all cortical layers in these volumes. Finally, we examine the potential 
of the NEURD workflow to yield novel scientific insights about neural 
circuit connectivity, including higher-order motifs in which we observe 
at least three nodes (neurons) and edges (synapses) in a specific graph 
arrangement. NEURD includes a fast workflow to identify axonal– 
dendritic proximities (regions where the axon of one neuron passes 
within a threshold distance of a postsynaptic dendrite).

Similar to other open source software packages that have supported 
the widespread adoption of other complex data modalities such as 
calcium imaging (CaImAn7 and Suite2P8), Neuropixels recordings 
(KiloSort9 and MountainSort10), label-free behavioural tracking (Deep-
LabCut11, MoSeq12 and SLEAP13) and spatial transcriptomics (Giotto14 
and Squidpy15), the goal of NEURD is to make ‘big neuroscience data’ 
(in this case, large-scale electron microscopy reconstructions) acces-
sible to a larger community. As more large-scale electron microscopy 

reconstructions become available, tools such as NEURD will become 
increasingly essential for exploring principles of neural organization 
across multiple species.

The following tables are provided in the supplementary informa-
tion for further reference: Supplementary Table 1, cell-type subclass 
abbreviations and excitatory/inhibitory classification glossary; Sup-
plementary Table 2, dataset sizes and relevant sample numbers for all 
figures and statistics; and Supplementary Table 3, a comprehensive 
guide to the pre-computed features provided by NEURD.

Summary of large-scale reconstructions
Data collection for the MICrONS and H01 dataset has been described 
previously1,2. The tissue preparation, slicing procedure and imaging 
resolution (4–8 nm × 4–8 nm × 30–40 nm) was roughly similar in both 
cases. However, the imaging and reconstruction workflows for the two 
datasets were very different. The MICrONS volume was collected with 
transmission electron microscopy (TEM)16, whereas the H01 volume 
was collected with scanning electron microscopy (SEM)17, and differ-
ent reconstruction pipelines were used1,2,6. However, all volumetric 
reconstructions produce similar 3D meshes as a common data product 
downstream of the segmentation process. The capabilities of NEURD 
are focused at the level of these mesh representations, which are much 
more lightweight than the original electron microscopy data, but still 
capture rich information about the microscale anatomy of neurons 
that can be useful for a variety of downstream analyses, including 
comparative analyses of neural circuitry across species, volumes and 
reconstructions.

Preprocessing of neuronal meshes
Electron microscopy reconstructions yield neural meshes with vary-
ing levels of completeness, and with different kinds of merge errors 
(Fig. 1b–e). Merge errors include multiple whole neurons connected 
together (Fig. 1c) and disconnected pieces of neurite (orphan neurites) 
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Fig. 1 | Working with neuronal meshes from large-volume electron 
microscopy segmentations. a, The MICrONS Minnie65 volume is an 
approximately 1,300 × 820 × 520 μm3 rectangular volume from mouse visual 
cortex; H01 is a wedge-shaped volume from human temporal cortex with a 
longest dimension of 3 mm, a width of 2 mm and a thickness of 150 μm. b–e, The 
range of accuracy across neural reconstructions in the MICrONS and H01 
volumes. b, Example of a nearly complete (manually proofread) single neuron. 

c, A mesh containing two merged neurons from the MICrONS volume. d, Example 
of an orphan merge error with a piece of dendrite incorrectly merged onto a 
neuron mesh. e, An incompletely reconstructed neuron from the H01 volume. 
f, An overview of the NEURD workflow: starting from volumes and their initial 
mesh states (Fig. 1), to the processing pipeline (Fig. 2), automatic proofreading 
(Fig. 3), and cell typing (Supplementary Fig. 12), which then enables the analysis 
of morphology (Fig. 4), connectomics, and functional connectomics (Fig. 5).
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merged onto different neural compartments (Fig. 1d). Merge errors 
may also include glia or pieces of blood vessels merged onto neurons 
(Fig. 1f). We take advantage of existing tools for mesh processing18–21 and 
apply them in an initial workflow that is agnostic to the identity of the 
mesh object (Fig. 2 and Supplementary Methods). Systematic inspec-
tion by manual proofreaders confirmed the high accuracy of the soma, 
axon, dendrite, glia, compartment and spine annotations generated 
during the mesh processing workflow (Supplementary Figs. 1 and  2).

Graph decomposition
We decompose skeletons of axonal and dendritic processes into a 
directed tree graph (NetworkX object in Python22; we provide a step-by- 
step online tutorial on how to export these as SWC files). In these graphs, 
the root node is the soma and the other nodes are individual non- 
branching segments. Edges project downstream away from the soma, 
and subgraphs downstream of the soma are a stem. Multiple soma nodes 
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Fig. 2 | Decomposition, feature extraction and graph annotation. a, The 
input data (mesh and synapses) required for the NEURD workflow. b, The 
reconstructed meshes are pre-processed through a number of steps including 
decimation, glia and nuclei removal, soma detection and skeletonization.  
Mesh features are projected back onto the skeleton and spines are detected.  
c, Decomposition graph object composed of two neurons merged together. 
The decomposition compresses the skeleton, mesh and synapse annotations 
of a non-branching segment into a single node in a graph, with directed edges 
to the downstream segments connected at a branch point. The soma is the 
singular root node of this tree. d, NEURD automates computation of features  
at multiple levels. Node (non-branching segment)-level features include basic 
mesh characteristics (for example, diameter of the neural process or number  
of synapses per skeletal length). Subgraph features capture relationships 

between adjacent nodes such as branching angle or width differences. Graph 
features capture characteristics of the entire neuron and are computed by 
weighted average or sum of node features, or by counting subgraph motifs. 
Postsyn, postsyaptic region. e, The final product is a cleaned and annotated 
decomposition object with a single soma that can be fed into a variety of 
downstream analyses. f, NEURD supports a variety of operations and 
manipulations on the decomposition objects. Multi-soma splitting is performed 
with heuristic rules. The entire decomposition graph is classified as excitatory 
or inhibitory and one subgraph is identified as the axon. Automated proofreading 
is performed to remove probable merge errors (see Fig. 3). A set of heuristic 
rules is implemented to label neural compartments, followed by a finer-scale 
cell-type classification using graph neural networks (GNNs) (Supplementary 
Fig. 12). PCA, principal components analysis.
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are split apart if more than one soma is detected, and any cycles in the 
graph are broken during the decomposition process (Fig. 2f and Sup-
plementary Methods). Previous work has emphasized the utility of this 
kind of graph representation of each neuron, which facilitates flexible 
queries and analyses of features and annotations at different scales23,24.

NEURD computes a large number of features at the branch (node), 
stem (subgraph) or whole-neuron (graph) level (Fig. 2c,d). These 
multi-scale features make it straightforward to translate neuroscience 
domain knowledge into neuron or compartment-level operations and 
queries. The most important context for this translation is automatic 
proofreading (Fig. 3), and NEURD also includes workflows for common 
tasks such as cell-type classification (Supplementary Fig. 12), morpho-
logical analysis (Fig. 4) and connectivity analysis (Fig. 5).

Automated proofreading
Node, graph and subgraph features can be queried to identify patterns 
of features that are commonly found at merge errors in the reconstruc-
tion (for example, sharp discontinuities in width between adjacent 
dendritic nodes, or axonal branches that ‘double-back’ sharply towards 
the soma). Once the error location is identified, all nodes downstream of 
the error are stripped from the mesh and returned to the ‘sea of uncon-
nected fragments’ in the volume, excluding them from any subsequent 
analysis. The NEURD proofreading workflow is easily extensible, and 
the user can define which graph filters to apply in which order. For any 
error correction, the rule and relevant parameters that determined the 
edit are stored for subsequent evaluation and use, potentially providing 
a rich set of training data for machine learning approaches.

To illustrate this process, we provide a small set of heuristic proof-
reading rules implemented as graph filters (Fig. 3a, Supplementary 
Fig. 3 and Supplementary Methods) that yielded good performance 
on merge error correction in both volumes, but especially in the 
MICrONS dataset. Manual validation of these rules was performed 
in the context of standard proofreading and multi-soma splitting 
using the NeuVue Proofreading Platform25 by the proofreading team 
at Johns Hopkins University Applied Physics Laboratory (APL). We 
provided APL with suggested error locations in the MICrONS vol-
ume, and experienced proofreaders evaluated each proposed split 
for accuracy (Supplementary Fig. 4a–c). This validation set included 
multi-soma splitting, axon-on-axon and axon-on-dendrite merge 
errors, and enabled us to measure both the accuracy of these proof-
reading rules and the speed benefits of a semi-supervised approach 
compared to a fully manual effort. We were also able to optimize 
these rules on the basis of proofreader feedback, and we identified 
specific rules and parameter thresholds could be applied with high 
confidence to correct merge errors without human intervention. Vali-
dation of this ‘high-confidence’ subset of axon-on-axon merges and 
axon-on-dendrite merges yielded a 99% and 95% agreement between 
the algorithm’s split operations and those performed by a human 
proofreader (Supplementary Fig. 4e). We applied nearly 150,000 of 
these high-confidence automatic edits in bulk to the publicly avail-
able MICrONS segmentation volume. Using NEURD suggestions in a 
semi-supervised manner to guide the challenging process of splitting 
multi-soma segments increased the speed of this process more than 
threefold compared with manual methods (Supplementary Fig. 4d 
and Supplementary Methods).

b c d e f

Axon

Dend

Before After

Axon

Dend

Pre
cis

ion

Rec
all

Pre
cis

ion

Rec
all

Pre
cis

ion

Rec
all

Pre
cis

ion

Rec
all

E
xc

ita
to

ry
In

hi
b

ito
ry

Axon

Dend

Before After

Axon

Dend

E
xc

ita
to

ry
In

hi
b

ito
ry

If the parent–child skeletal angle 
difference is too small, then the 
child is usually from a merge error

Neuroscience rule: Graph rule:

A → B
ƒ

sk diff
(A, B) < min angle

1

2
3

Soma

Double-back rule:a

1.0

0.8

0.6

0.4

0.2

0

1.0

0

0.8

0.6

0.4

0.2

g h i j k

0
0 0

250

500

750

1,000

1,250

500

500 1,000 1,500

1,000

1,000
TP
FP

300
10,000 10,000

5,000

0

5,000

0

200

100

0

N
o.

 o
f s

yn
ap

se
s

N
o.

 o
f s

yn
ap

se
s

N
o.

 o
f s

yn
ap

se
s

N
o.

 o
f s

yn
ap

se
s

750

500

250

0
0 25 50 75 100

Cell index

0 25 50 75 100 0 20 40 60

Cell index Cell index

0 20 40 60

Cell index

1,000

1,000

2,000

2,000
3,000

3,000

y 
(μ

m
)

x (μm) x (μm)

500 1,000 1,500

0.13 0.19

0.09

0.85 0.92

1.00

1.00

1.00

1.000.95 0.95

0.92

0.93

0.90 0.53

0.79

0.73

0.97

0.87 0.61

0.99 0.99

0.910.63

0.90 1.00

1.00

1.00 0.99

0.57

1.00

1.00

x (μm)

y 
(μ

m
)

y 
(μ

m
)

TP
FN
FP

TP
FP

TP
FN
FP

ƒ(1, 2) = 175°

ƒ(1, 3) = 28°

Fig. 3 | NEURD graph decomposition enables automated proofreading.  
a, Implementing domain knowledge as subgraph rules to automatically remove 
merge errors (see Supplementary Fig. 3 for more rules). b, Laminar distribution 
of merge errors (H01). The inhomogeneity of errors across different layers, 
possibly due to differences in neuropil density. The pial surface is to the right 
and slightly up (see Supplementary Fig. 7 for more details). c, Increased 
frequency of axon edits is observed in layer 5 of cortex (MICrONS). Pial surface 
is up. d, Dendritic errors in the MICrONS dataset increase near the top layers of 
the volume, where fine excitatory apical tufts lead to more frequent merges 
(see Supplementary Fig. 6 for more details). e,f, MICrONS (e) and H01 (f) synapse 
validation quantified by synapse precision and recall compared with manual 
proofreading (ground truth). ‘Before’ describes the accuracy of the raw 
segmentation prior to any proofreading. The substantial increases in precision 

‘After’ automated proofreading (especially for axons) indicates that the  
cleaned neurons have good fidelity. The reduction in ‘After’ recall indicates the 
loss of some valid synapses in the automatic proofreading process (mostly 
concerning axons), while still retaining the majority of correct synapses (see also 
Supplementary Fig. 9 restricted to single somas). Dend, dendrite. g, An excitatory 
neuron from the MICrONS dataset in the 75th percentile of merge error skeletal 
length; identified merge errors are shown in red. h–k, Number of true-positive 
(TP) and false-positive (FP) axonal synapses from individual excitatory (h,i) or 
inhibitory ( j,k) neurons in the validation set before (h,j) and after (i,k) automated 
proofreading, illustrating the large number of false-positive (red) synapses  
in the raw segmentation that are removed by automated proofreading (see 
Supplementary Figs. 8 and  9 for more details on the MICrONS dataset and 
Supplementary Fig. 10 for similar validation on the H01 dataset).
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In the MICrONS dataset, we identified hundreds of thousands of 
merge errors corresponding to dozens of metres of incorrectly merged 
axons and dendrites within the 1 mm3 volume (Supplementary Fig. 5). 
Corrections in the H01 dataset were an order of magnitude smaller 
owing to fewer cells and the less complete initial reconstructions in that 
volume, but were still substantial (Supplementary Fig. 5). Merge errors 
were more prevalent in some regions owing to sectioning artifacts 
(Supplementary Figs. 6g–l and 7h–n) or to intrinsic differences in the 
morphology of neurons across layers (Fig. 3b–d and Supplementary 
Figs. 6a–f and 7a–g). For example, high- and low-degree axon edits in 
the MICrONS dataset were frequently made in upper layer 5, potentially 
owing to higher quantities of inhibitory neuropil, whereas dendritic 
double-back and width jump errors were more frequently located near 
the top layers of the volume, owing to merges between fine distal apical 
tufts of excitatory cells (Supplementary Figs. 6 and  7).

We compared the outcome of automatic proofreading (all edits, 
not just the high-confidence subset) to manual proofreading ‘ground 
truth’ on a test set of cells in the MICrONS (n = 122 excitatory and n = 75 
inhibitory) and H01 (n = 49 excitatory and n = 18 inhibitory) volumes 
(see Supplementary Fig. 30 for manually proofread cell locations).

The precision of the synaptic data—that is, the number of actually 
true synapses that were labelled as true divided by the total number of 
synapses labelled as true—was substantially higher after proofreading 
(for example, 0.87 after compared to 0.13 before for MICrONS excita-
tory axons, a more than sixfold increase). For the same axons, this 
increase in precision was achieved with only a 40% reduction in recall 
(number of correctly identified synapses divided by the number of true 
synapses). Low precision can be catastrophic for downstream analy-
ses, whereas low recall can support many analyses on the basis of the 
assumption that the observed synapses are a representative sample of 
the full distribution (precision and recall are summarized in Fig. 3e,f and 
Supplementary Figs. 8–10). The precision and recall of our automated 
method is captured visually in the plots in Fig. 3h–k. Comparing ‘before’ 

and ‘after’ proofreading performed with NEURD, red false positives are 
almost entirely removed, at the cost of a thin margin of false negatives 
(grey) cutting into the green true positives. For example, for the axons 
of the the 122 excitatory neurons in the MICrONS dataset, NEURD cor-
rectly removed 24,430 false synapses and incorrectly removed 1,420 
true synapses, leaving 2,216 true synapses and 324 false synapses. Full 
numbers are available in Supplementary Table 2.

Because our automated proofreading procedure only removes data, 
recall is measured on the basis of the true synapses in the automatic 
segmentation (after merge errors were removed manually), and does 
not include synapses from any manual extensions. Recall was especially 
high for dendrites (99% for MICrONS single-soma neurons; Supplemen-
tary Fig. 9), reflecting the high performance of the initial segmenta-
tions. Overall recall was lower for axons (approximately 60% for both 
excitatory and inhibitory cells in the MICrONS dataset), indicating that 
NEURD incorrectly removed a larger number of axonal segments com-
pared to dendrites. Performance on the H01 dataset was also reduced 
compared with MICrONS, because the less-extensive reconstruction 
was associated with fewer merge errors overall. Extensive, sometimes 
centimetre-scale arbors remained after removing merge errors (Fig. 3g 
and Supplementary Fig. 11). In summary, both from the perspective 
of synapses (Fig. 3h–k and Supplementary Figs. 8i–p and  10i–p) and 
skeletons (Supplementary Figs. 8e–h and  10e–h), our automated  
proofreading approach can be applied at scale to remove merge errors 
with accuracy approaching that of manually cleaned cells (Supple-
mentary Fig. 11).

Cell-type classification
Densely reconstructed electron microscopy volumes hold great 
promise for understanding the connectivity between different neural 
subtypes26–32. Because electron microscopy provides limited access 
to genetic markers, cell types must be identified by morphological 
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Fig. 4 | Morphological analysis enabled by NEURD feature extraction.  
a, Average number of synapses onto the AIS of cells at different laminar depths 
(mean ± s.d.) for MICrONS (n = 22,955). b, Distribution of the number of soma 
synapses per cell. As expected, neurons in the MICrONS volume have more 
identified synapses onto their soma, despite the smaller surface area compared 
to human somas (see Supplementary Fig. 16 for more AIS and soma synapse 
results). c, An example spine segmentation with the features extracted for  
each spine submesh followed by a kernel density estimation of the UMAP  
embedding of these features for spines sampled from the MICrONS dataset  
(see Supplementary Fig. 19 for more details). Exc, excitatory; inh, inhibitory.  
d, Histograms showing the distribution of the mean skeletal angle of the thickest 
basal stem as a function of volume depth (see Supplementary Fig. 17 for more 
details). e, Spine head synapse size and spine head volume joint distribution for 

the H01 dataset, showing a positive Pearson’s correlation coefficient (P < 10−300; 
see Supplementary Fig. 20 for more details). f, Histogram for all the non-apical 
dendritic stems of every neuron in the MICrONS volume comparing the initial 
width of the stem to the number of leaf nodes (blue scaling indicates the number 
of dendritic stems for a given bin), showing a positive Pearson’s correlation 
coefficient (corr; P < 10−300; see Supplementary Fig. 18 for more details).  
g, The ratio of non-spine synapses to spine counts varies across cell types.  
h, Distribution of spine characteristics for different cell types, comparing the 
volume of each spine head and the size of the largest synapse on that spine 
head, where outlines indicate the quartile boundaries for each distribution  
(see Supplementary Fig. 15 for more cell-type distributions). See Supplementary 
Table 2 for all associated n values.
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features or connectivity (if sufficient proofreading is performed). The 
relationship with molecularly defined cell classes can sometimes be 
inferred from extensive previous work relating morphological features 
to transcriptomic classes33–35, including from our consortium36. Previ-
ous studies have demonstrated that rich information enabling cell-type 
classification is available even in local nuclear and peri-somatic fea-
tures37,38, small segments of neural processes30, views of single-nuclei 
segments at different resolutions39 and the shape of postsynaptic 
regions40. NEURD provides an additional rich and interpretable fea-
ture set at the level of non-branching segments that can be used for 
accurate cell-type classification via a number of different approaches, 
as we describe below.

As expected41, we found that a logistic regression model trained on 
just two spine and synapse features separates excitatory and inhibitory 
cells with high accuracy, using the same parameters for classification 
across both the MICrONS and H01 dataset (Supplementary Fig. 12a,b; 
MICrONS, n = 3,985 excitatory and n = 897 inhibitory; H01, n = 5,800 
excitatory and n = 1,755 inhibitory). To test whether NEURD graph 
objects could be used to distinguish even finer cell types, we turned 
to graph convolutional networks (GCN) (Supplementary Fig. 12c–f). 
We trained a simple GCN on the dendritic subgraph of a variety of 
hand-labelled cell types in the MICrONS volume (n = 873 total cells), 
which represent a relatively complete set of cell-type classes for this 
volume and are more thoroughly described in refs. 26,37. We focused on 
the dendrites in this volume because of their high recall from the initial 

segmentation and the high precision after automated proofreading 
(Fig. 3f). Most of the embedding space was covered by the labelled data-
set (Supplementary Fig. 12c) and cells outside the labelled dataset had 
soma centroids at expected laminar depths (Supplementary Fig. 12d), 
even though no coordinate features were used in the GCN classifier.

We evaluated cell-type classification performance on a held-out test 
set using a GCN with access to the entire dendritic graph (n = 178 test 
neurons; mean class accuracy = 0.82; class accuracy: layer 2/3 pyramidal 
(23P, 0.94), layer 4 pyramidal (4P, 0.69), layer 5 intratelencephalic (5P-IT, 
0.60), layer 5 near-projecting (5P-NP, 1.00), layer 5 pyramidal track 
(5P-ET, 0.86), layer 6 corticothalamic (6P-CT, 0.58), layer 6 intratelen-
cephalic (6P-IT, 0.62), basket cell (BC, 0.85), bipolar cell (BPC, 0.89), 
Martinotti cell (MC, 1.00) and neurogliaform cell (NGC, 1.00); Sup-
plementary Fig. 12e, also see actual counts for training, validation and 
test in Supplementary Fig. 14a–c). We also evaluated the classification 
performance using only disconnected dendritic stems (n = 1,023 test 
stems; mean class accuracy = 0.66; class accuracy: 23P (0.73), 4P (0.78), 
5P-IT (0.33), 5P-NP (0.78), 5P-ET (0.78), 6P-CT (0.56), 6P-IT (0.49), BC 
(0.80), BPC (0.70), MC (0.79) and NGC (0.50); Supplementary Fig. 12f; 
counts for training, validation and test in Supplementary Fig. 14d–f). 
The information present in disconnected individual dendritic stems 
(branching segments connected to the soma) is thus sufficient to per-
form fine cell-type classification nearly as well as graphs representing 
entire neurons, consistent with previous literature classifying cells 
based on more local features30,37,38 (the cell-type abbreviation glossary 
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Fig. 5 | Connectivity analysis enabled by NEURD. a, Schematic illustrating 
two proximities between a pair of neurons (axon passing within 5 μm radius of  
a dendrite). Only one proximity has a synapse, thus the ‘conversion rate’ is 50%. 
b, Cumulative density function (CDF) of the postsynaptic dendritic skeletal 
walks for different connection types, demonstrating that excitatory inputs 
occur further along the dendrite from the soma (see Supplementary Fig. 23 for 
more details). c, Mean conversion rate as a function of distance along the axon 
(see Supplementary Fig. 23 for more details). d,e, Conversion rates (synapses/
proximities) for different excitatory and inhibitory combinations. The x-axis 
represents the maximum distance that is considered a proximity. f, Conversion 
rates for different cell-type subclasses and compartments are largely consistent 
with previous studies (MICrONS; cell-type labels generated from a GNN classifier; 
see Supplementary Table 1 for glossary and Supplementary Fig. 24 for more 
conversion rates). g, The frequency (mean ± s.d.) of reciprocal connections or 

edge-dense three-node motifs was enriched compared with null distributions 
where synaptic degree distribution is held the same but edges are shuffled 
(orange), where the synaptic edges are shuffled across existing proximity 
edges (green) or where synapses are randomly shuffled (red); 250 random 
graph samples for each null distribution comparison (see Supplementary 
Fig. 25 for more details and inhibitory/excitatory-only graphs). h, Example 
multi-synaptic connection (n = 7 synapses) from an excitatory to inhibitory 
neuron (H01). i, Distribution of response correlation mean (±s.e.m.) between 
pairs of functionally matched excitatory neurons (MICrONS). Response 
correlation is significantly larger for pairs of neurons with 4 or more synapses 
connecting them (n = 11 pairs) compared with those with 1, 2 or 3 synapses 
(n = 5,350, 280 or 34 pairs, respectively; see Supplementary Fig. 27 for more 
details). See Supplementary Table 2 for all associated n values.
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is provided in Supplementary Table 1). Because the classifier is a deep 
learning model, the output from the final softmax layer can be used as 
a confidence measurement, making it possible to restrict downstream 
analyses to high-confidence cell-type labels.

Morphological analysis
The features extracted by NEURD—including features of different 
compartments (Supplementary Fig. 19a), the geometry of axonal and 
dendritic compartments (Supplementary Fig. 17a) and spine features 
(Supplementary Fig. 19b)—provide a rich substrate for morphological 
analysis (Supplementary Fig. 15).

In particular, extensive work has linked spine morphology to synaptic 
strength and stability, making them important targets for understand-
ing plasticity and connectivity in neural circuits. A variety of methods 
have been developed to automate spine detection in 2D or 3D image 
data using fully automatic42–46 or semi-automatic47 approaches. NEURD 
offers an accurate spine detection workflow that achieves high accu-
racy with a fully automated mesh segmentation approach. Precision 
and recall for spines with a skeletal length larger than 700 nm was 90% 
or higher (Supplementary Fig. 1). In addition, NEURD segments the 
spine head from the neck (when possible) and computes statistics 
about the individual head and neck submeshes, creating a feature-rich 
dataset for testing hypotheses about spine morphology that can then 
be conditioned on postsynaptic compartment type or the cell type 
of the presynaptic or postsynaptic cell. As expected, the spine head 
volume and synaptic density volume were the only strongly correlated 
spine features48,49 (Supplementary Fig. 20). The spatial distribution 
of uniform manifold approximation and projection for dimension 
reduction (UMAP) embeddings (2D projection) for feature vectors of 
spines sampled from the MICrONS and H01 dataset showed a similar 
structure, with spines that share similar features embedded in similar 
locations and a somewhat consistent embedding pattern for inhibitory 
and excitatory spines in the two volumes. This similarity suggests that 
H01 and MICrONS spines sample from a similar landscape of diverse 
spine shapes (Supplementary Fig. 19c,d), consistent with previous 
work examining the distribution of non-parametric representations 
of postsynaptic shapes across diverse neural subtypes40.

We attempted to replicate and extend several other findings 
observed in previous studies of the MICrONS and H01 datasets regard-
ing the subcellular targeting of synaptic inputs. First, we computed 
the number of synapses onto the axon initial segment (AIS) of neurons 
at different depths. Replicating a previous report, in the MICrONS 
volume, superficial L2/3 pyramidal cells received the largest num-
ber of AIS synapses, with up to 2 to 3 times the innervation of the 
lower cortical layers27,50,51 (Fig. 4a). However, in the H01 dataset, this 
laminar inhomogeneity in AIS synapses was much less prominent, 
with more similar numbers of AIS inputs observed across all depths 
(Supplementary Fig. 16h). Additionally, similar to AIS synapses, we 
found a marked difference in the distribution of somatic synapses 
across depth between the MICrONS and H01 dataset (Supplementary 
Fig. 16e,f). Finally, the overall frequency of somatic synapses were also 
distinct across the two volumes, consistent with previous literature 
describing fewer somatic synapses in the human compared to mouse52 
(Fig. 4b); however, we found the opposite trend for the AIS, with fewer 
AIS synapses in the mouse volume compared with the human volume 
(Supplementary Fig. 16i).

In H01, deep layer pyramidal cells were previously observed to have a 
strong bias in the radial angle of their thickest basal dendrite1. We exam-
ined the MICrONS volume and did not observe a strong bias in thickest 
basal, even in deep layers (Supplementary Fig. 17b). Then, looking at 
H01, we were able to replicate the pattern of thickest basal dendrite 
direction preferences in deeper layers (Supplementary Fig. 17c). How-
ever, we also found that this pattern appeared to continue into more 
superficial layers, extending the previous finding. In deep layers, the 

difference between the thickest and second-thickest dendrite was 
nearly twice the difference in more superficial layers, making this effect 
more salient.

The diversity of pre-computed features offered by NEURD enabled 
us to identify several interesting morphological features that differ 
across cell types, including many that have been reported previously in 
other studies. For example, the spindly, non-branching basal dendrites 
of near-projecting (NP) cells26,29 are clearly distinct from extensively 
branching basal dendrites of L2/3 pyramidal cells (Supplementary 
Fig. 15h), and neurogliaform cells are the most highly branched neu-
rons with the largest number of leaf nodes (Supplementary Fig. 18a). 
Across all neurons, dendritic stems with larger numbers of leaf nodes 
had a larger initial dendritic diameter at their connection to the soma 
(Supplementary Fig. 18b,c), potentially reflecting developmental or 
metabolic constraints.

Synapses onto the dendritic shaft and synapses onto dendritic spines 
roughly correspond to inhibitory versus excitatory inputs53–55. In a 
histogram of shaft to spine synapses, NP cells were again located at the 
higher end of the distribution, whereas L4 and L2/3 pyramidal cells had 
the lowest shaft-synapse to spine-synapse ratio (Fig. 4g), suggesting 
that they receive a relatively larger fraction of excitatory (compared 
with inhibitory) input. Because NEURD also automatically segments 
both soma meshes and spine heads and necks, this enables comparison 
across cell types of features such as soma volume and somatic syn-
apses (Supplementary Fig. 15b,f), spine neck length (Supplementary 
Fig. 15i), spine density (Supplementary Fig. 15a) and the relationship 
between spine synapse size and spine head volume, as in Fig. 4h and 
Supplementary Fig. 20.

Connectivity and proximities
Next, we examined the connectivity graph in the MICrONS and H01 data-
sets after automatic proofreading. As expected, removal of false merges 
substantially reduced the mean in-degree (number of incoming synapses 
onto a neuron) and out-degree (number of projecting synapses from 
a neuron) across both volumes owing to the removal of merge errors, 
resulting in a sparsely sampled but high-fidelity graph (Fig. 3e,f). A variety 
of connectivity statistics including number of nodes and edges, mean in 
and out degrees, and mean shortest path between pairs of neurons along 
excitatory and inhibitory nodes are provided in Supplementary Fig. 22.

To facilitate the analysis of synapse specificity in sparse connecto-
mes, we implemented a fast workflow for identifying axonal–dendrite  
proximities, regions where the axon of one neuron passes within a 
threshold distance (here 5 μm) of the dendrite of another neuron 
(Fig. 5a and Supplementary Methods). Previous studies have com-
puted proximities from skeletons of simulated models56 or manually 
traced data57,58 with a similar logic. Proximities are necessary but not 
sufficient for the formation of a synapse31,57,59,60, and so the ‘proximity 
graph’ can serve as a valuable null distribution for comparing potential 
connectivity with synaptic connectivity between neurons: instead of 
looking at synapse counts between cells, which are dependent on the 
geometry and completeness of the neuropil, proximities make it pos-
sible to calculate ‘conversion rates’—the fraction of proximities that 
resulted in actual synaptic connections. NEURD also provides functions 
to compute ‘presyn skeletal walk’—the distance from a synapse to the 
soma of the presynaptic neuron along the axon, and ‘postsyn skeletal 
walk’—the distance from synapse to soma along the postsynaptic den-
drite. Combined with cell typing, compartment labelling and spine 
annotation, these features enable powerful analyses of neural con-
nectivity conditioned on the cellular identity and subcellular location 
of synapses on both pre- and postsynaptic partners (Supplementary 
Figs. 6 and 26).

Conversion rates between neural subtypes in the MICrONS data-
set replicated previous results from connectivity measured via slice 
multi-patching and electron microscopy reconstructions, especially the 
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prolific connectivity of basket cells onto both excitatory and inhibitory 
somas26,61–63 (Fig. 5f) and inhibitory–inhibitory relationships, includ-
ing BCs inhibiting other BCs, MCs avoiding inhibiting other MCs, and 
BPCs preferentially inhibiting MCs26,61,62,64 (Supplementary Fig. 24).

The subcellular targeting of different inputs is apparent in plots 
of the postsyn skeletal walk distance to the soma for synapses arriv-
ing at the basal dendrite. As has been previously described53,65,66, 
inhibitory-onto-excitatory synapses tend to be found closer to the 
somatic compartment than excitatory-onto-excitatory synapses 
(Fig. 5b and Supplementary Fig. 23g). At an even smaller scale, with 
the spine head, spine neck or shaft classification propagated to syn-
apses, we can study how excitatory and inhibitory inputs to spines 
display different scaling relationships between synapse size and spine 
head volume (Supplementary Fig. 21). We also show, as expected, that 
excitatory and inhibitory cells differ in the number and relative sizes 
of synapses on their target spine heads66,67 (Supplementary Fig. 21).

Conversion rates for excitatory-to-excitatory proximities were low 
in both H01 and MICrONS, consistent with previous findings of sparse 
pyramidal cell connectivity in the cortex57,58,61,68 (Fig. 5d,e). However, 
conversion rates were substantially higher for excitatory-to-inhibitory 
proximities (Fig. 5d,e), especially in H01, and especially for proximity 
distances less than 2 μm (unlike excitatory synapses onto excitatory 
cells, where spines presumably reduce the dependence on distance). 
Combining the presynaptic (axonal) skeletal walk features and proximity 
analyses revealed an interesting similarity in excitatory-onto-inhibitory 
connectivity between the MICrONS and H01 datasets, with conversion 
rates peaking in the more proximal axon a few hundred micrometres 
from the soma30,69–71 (Fig. 5c and Supplementary Fig. 23e), a pattern 
that could reflect a lateral inhibition motif. Conversion rates were also 
higher above (more superficial to) the presynaptic soma than below 
(deeper than) the presynaptic soma for excitatory-onto-inhibitory 
connections in both volumes (Supplementary Fig. 23b,c).

Large-volume electron microscopy connectomics offer tremendous 
potential opportunities to examine higher-order motifs on a large scale. 
We found that more densely connected triangle motifs were enriched 
in the MICrONS volume compared with several controls (Fig. 5g and 
Supplementary Fig. 25 for excitatory and inhibitory subgraphs). The 
over-abundance of densely connected triangle motifs that we observed 
is consistent with previous findings suggesting that this higher-order 
organization is enriched in the cortex27,56,72–74. A similar pattern was 
observed in the H01 dataset, consistent with previous modelling of 
connections and proximities in the dataset56. However, in the H01 
volume several of the three-node motifs with larger numbers of con-
nected edges were missing owing to the less complete reconstruction  
(Supplementary Fig. 25).

Functional connectomics
A key advantage of the MICrONS dataset is the functional characteri-
zation of matched neurons in vivo prior to electron microscopy data 
collection. The relationship between function and synaptic connec-
tivity is covered in detail in a separate paper75, which includes analysis 
using automatically proofread data from NEURD. Here, we aimed to 
provide an illustration of how automated proofreading can enable a 
specific functional connectomics analysis that would otherwise be 
very challenging. We identified pairs of excitatory neurons connected 
by one, two, three, or four or more synapses. Querying for these rare 
high-degree connections between pyramidal cells was only possible 
after automated proofreading, since of the original 10,000-plus pairs 
with four or more connections, approximately 97% were identified as 
merge errors during automatic proofreading. Connections were further 
restricted to synapses onto postsynaptic spines to guard against pos-
sible missed merge errors where an inhibitory axon segment might still 
be merged to an excitatory neuron. Examples of these multi-synaptic 
connections have been highlighted in the H01 dataset (Fig. 5h), and rare 

examples can also be found in the MICrONS dataset76 (Supplementary 
Fig. 27b). We were able to identify n = 11 of these pairs in exclusively 
automatically proofread neurons (no manual proofreading), where 
both neurons also had been characterized functionally (Supplementary 
Fig. 27c). The average response correlation was calculated for each 
group of pairs75,77 (Supplementary Methods). We found that neurons 
with 4 or more synapses had significantly higher response correlations 
(0.259 ± 0.042 (n = 11)) to visual stimuli than neurons with fewer than  
4 synapses (1 synapse: 0.118 ±  0.002 (n = 5,350); 2 synapses: 0.140 ± 0.011 
(n = 280); 3 synapses: 0.133 ± 0.030 (n = 34)) connecting them (Fig. 5i), 
consistent with a Hebbian ‘fire together–wire together’ rule governing 
high-degree connectivity in the cortex, and this same pattern was also 
observed for n = 12 pairs of manually proofread neurons. For auto-
proofread neurons, two-sample Kolmogorov–Smirnov test and t-test 
for comparing each multi-synaptic group’s null likelihood of being 
drawn from the same distribution as the 1-synapse group: 2 synapses 
Kolmogorov–Smirnov test statistic = 0.068, P = 0.17 and t-test P < 0.03; 
3 synapses Kolmogorov–Smirnov test statistic = 0.139, P = 0.49 and 
t-test P = 0.60; 4 synapses Kolmogorov–Smirnov test statistic = 0.508, 
P < 10−2 and t-test P < 10−2 (and still significant after Bonferroni correc-
tion for multiple comparisons with a significance threshold of P < 0.02).

Discussion
NEURD is an end-to-end automated pipeline that is capable of cleaning 
and annotating 3D meshes from large electron microscopy volumes and 
pre-computing a rich set of morphological and connectomic features 
that are ready for many kinds of downstream analyses. Building on 
existing mesh software packages, NEURD adds a suite of neuroscience- 
specific mesh functions for soma identification, spine detection and 
spine segmentation that are applicable across multiple datasets, as well 
as workflows for skeletonization and mesh correspondence that com-
plement existing tools. We demonstrate the utility of this integrated 
framework for morphological (Fig. 4 and Supplementary Figs. 15–20) 
and connectomic analyses (Fig. 5 and Supplementary Figs. 21–27), most 
of which involved queries against pre-computed features, as well as 
demonstrating how these features can be combined to ask new ques-
tions (Fig. 4h and Supplementary Figs. 16i,j, 21g,h, 23d,e and 27d). The 
set of features generated by NEURD is easily extensible, and our hope 
is that NEURD will make these daunting datasets more accessible for 
a larger group of researchers.

Several previous studies have proposed post hoc methods for auto-
mated proofreading including merge and split error detection and 
correction. Some of these methods make use of convolutional neural 
networks (either supervised78,79 or unsupervised80), reinforcement 
learning methods81 or other machine learning approaches82–84. Others  
make use of heuristic rules applied to neural skeletons85,86, and at 
least one approach uses both skeleton heuristics and convolutional 
neural networks87. Compared with automated methods applied 
directly to the electron microscopy segmentation that may be hea-
vily memory-intensive, NEURD benefits from the lightweight features 
computed from mesh representations, enabling analysis to scale to 
larger volumes more easily. Methods based on the electron microscopy 
segmentation have the advantage that intracellular features can be 
used to aid proofreading, and these methods could potentially still be 
utilized upstream of NEURD. A key strength of the coarse-scale graph 
with pre-computed annotations is the flexible querying across multiple 
scales. For instance, distinguishing whether a thin, aspiny projection 
from a dendrite is the true axon or a merge error might require both 
local features and also additional information about the neuron type, 
the distance from the soma, and the spine density of the parent branch.

Our present implementation does not address some types of errors 
in automated segmentation. For example, it cannot presently handle 
merge errors that result in a co-linear segment of skeleton that we inter-
pret as a single non-branching segment. Second, because the present 
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implementation of NEURD is focused on removing false merges, it is 
unable to fix incomplete neural processes (Supplementary Fig. 8c). 
Motivated by the low recall of many neurons in these volumes, we plan 
to try using NEURD to perform automated extensions in the future by 
‘over-merging’ candidate segments at a truncation point, and then 
correcting the resulting ‘merge error’ to choose the best candidate 
for extension.

We performed extensive validation of our automated proofread-
ing approach to determine the precision and recall of our error cor-
rection, but as a general disclaimer it is important to note that some 
of the results that we have presented here might change if the same 
neurons were manually proofread and fully extended. For any par-
ticular scientific question, researchers using these volumes will need 
to weigh the relative importance of precision, recall and the number 
of neurons that it is feasible to proofread using manual or automated 
methods. Finally, our results currently present findings from only two 
mammalian volumes, but there is nothing in principle preventing the 
application of NEURD to large electron microscopy volumes from other 
species in the future.

Combining automated proofreading to generate a clean but incom-
plete graph with proximities to serve as a null distribution is a pow-
erful approach that can begin to reveal principles of pairwise and 
higher-order connectivity motifs in incomplete reconstructions. We 
observe a general overexpression of densely connected triangle motifs 
in comparison to proximity controls and some standard null models, as 
previously reported56,72–74. However, the ability to expand this work to 
include cell-type colourings of these motifs and add proximity-based 
controls will enable investigation of more complicated motif questions, 
unleashing the power of these datasets for addressing questions about 
higher-order circuit connectivity. As additional reconstructed volumes 
are released spanning species and brain areas, our ability to extract 
scientific insights will depend critically on integrated and scalable 
frameworks that make neurons and networks accessible for analysis, 
with a rich feature space suitable for machine learning approaches to 
understanding these complex datasets.
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